Vol. 65
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-03-20
An Electronically Tunable Dual-Band Filtering Power Divider with Tuning Diodes Sharing Technique
By
Progress In Electromagnetics Research M, Vol. 65, 187-195, 2018
Abstract
This paper presents an electronically tunable dual-band filtering power divider (TDFPD) with tuning diodes sharing technique. Two dual-mode tunable resonators (DMTRs) are embedded into a conventional power divider to achieve dual-band tunable bandpass filtering response. The two bands of the proposed TDFPD can be tuned independently. Tuning diodes sharing technique is utilized to reduce the number of tunable diodes. A prototype has been designed and fabricated to validate the proposed design as shown by the good agreement between the measured and simulated results. The measurement shows that the center frequencies of the lower and upper bands can be independently tuned from 1.31 to 1.62 GHz and 2.92 to 3.30 GHz, respectively. Within the passbands, isolation between the two output ports is higher than 16 dB with small phase and magnitude imbalance.
Citation
Yuan Jiang, Xianqi Lin, Cong Tang, and Jiawei Yu, "An Electronically Tunable Dual-Band Filtering Power Divider with Tuning Diodes Sharing Technique," Progress In Electromagnetics Research M, Vol. 65, 187-195, 2018.
doi:10.2528/PIERM18010937
References

1. Schuster, C., A. Wiens, F. Schmidt, M. Nickel, M. Schubler, R. Jakoby, and H. Maune, "Performance analysis of reconfigurable bandpass filters with continuously tunable center frequency and bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 11, 4572-4583, Nov. 2017.
doi:10.1109/TMTT.2017.2742479

2. Leggieri, A., D. Passi, D. Gagliesi, and F. D. Paolo, "Analysis and design of a gaas monolithic tunable polyphase filter in s/c bands," J. Microw. Optoelectron. Electromagn. Appl., Vol. 14, No. 1, 14-27, Jun. 2015.
doi:10.1590/2179-10742015v14i1423

3. Gómez-García, R., D. Psychogiou, and D. Peroulis, "Fully-tunable filtering power dividers exploiting dynamic transmission-zero allocation," IET Microw. Antennas Propag., Vol. 11, No. 3, 378-385, Feb. 2017.
doi:10.1049/iet-map.2016.0358

4. Feng, W., Y. Shang, W. Che, R. Gomez-Garcia, and Q. Xue, "Multifunctional reconfigurable filter using transversal signal-interaction concepts," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 11, 980-982, Nov. 2017.
doi:10.1109/LMWC.2017.2750022

5. Zhao, X., K. Song, Y. Zhu, and Y. Fan, "Wideband four-way filtering power divider with isolation performance using three parallel-coupled lines," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 9, 800-802, Sep. 2017.
doi:10.1109/LMWC.2017.2735240

6. Chen, F. J., L. S. Wu, L. F. Qiu, and J. F. Mao, "A four-way microstrip filtering power divider with frequency-dependent couplings," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 10, 3494-3504, Oct. 2015.
doi:10.1109/TMTT.2015.2457426

7. Gao, L., X. Y. Zhang, and Q. Xue, "Compact tunable filtering power divider with constant absolute bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 10, 3505-3513, Oct. 2015.
doi:10.1109/TMTT.2015.2454731

8. Chi, P. L. and T. Yang, "A 1.3-2.08 GHz filtering power divider with bandwidth control and high in-band isolation," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 6, 407-409, Jun. 2016.
doi:10.1109/LMWC.2016.2561620

9. Lin, S.-C., Y.-M. Chen, P.-Y. Chiou, and S.-F. Chang, "Tunable Wilkinson power divider utilizing parallel-coupled-line-based phase shifters," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 4, 335-337, Apr. 2017.
doi:10.1109/LMWC.2017.2678425

10. Lee, B., B. Koh, S. Nam, T. H. Lee, and J. Lee, "Frequency-tunable filtering power divider with new topology," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 7, No. 7, 1151-1162, Jul. 2017.
doi:10.1109/TCPMT.2017.2708723

11. Wong, K. W., R. R. Mansour, and G. Weale, "Reconfigurable bandstop and bandpass filters with wideband balun using IPD technology for frequency agile applications," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 7, No. 4, 610-620, Apr. 2017.
doi:10.1109/TCPMT.2017.2667580

12. Zhu, C., J. Xu, W. Kang, and W. Wu, "Microstrip switchable filtering power divider with three operating modes," Electron. Lett., Vol. 52, No. 25, 2046-2048, Dec. 2016.
doi:10.1049/el.2016.3170

13. Lu, Y., G. Dai, Y. Wang, T. Liu, and J. Huang, "Dual-band filtering power divider with capacitor-loaded centrally coupled-line resonators," IET Microw. Antennas Propag., Vol. 11, No. 1, 36-41, Jan. 2017.
doi:10.1049/iet-map.2016.0217

14. Psychogiou, D., R. Gómez-García, and D. Peroulis, "Fully adaptive multiband bandstop filtering sections and their application to multifunctional components," IEEE Trans. Microw. Theory Tech., Vol. 64, No. 12, 4405-4418, Dec. 2016.
doi:10.1109/TMTT.2016.2618396

15. Psychogiou, D., R. Gómez-García, A. C. Guyette, and D. Peroulis, "Reconfigurable single/multiband filtering power divider based on quasi-bandpass sections," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 9, 684-686, Dec. 2016.
doi:10.1109/LMWC.2016.2597264

16. Pozar, D. M., Microwave Engineering, 4th Ed., John Wiley & Sons, New York, NY, USA, 2009.

17. Moura, L. and I. Darwazeh, Introduction to Linear Circuit Analysis and Modelling: From DC to RF, 1st Ed., Elsevier, London, UK, 2005.