1. Ghosh, S. and K. Srivastava, "Broadband polarization-insensitive tunable frequency selective surface for wideband shielding," IEEE Trans. Electrom. Compat., Vol. 60, 166-172, 2018.
doi:10.1109/TEMC.2017.2706359
2. Orr, R., V. Fusco, et al. "Circular polarization frequency selective surface operating in Ku and Ka band," IEEE Trans. Antennas Propag., Vol. 63, 5194-5197, 2015.
doi:10.1109/TAP.2015.2477519
3. Vallecchi, A., R. J. Langley, and A. G. Schuchinsky, "Metasurfaces with interleaved conductors: Phenomenology and applications to frequency selective and high impedance surfaces," IEEE Trans. Antennas Propag., Vol. 64, 599-608, 2016.
doi:10.1109/TAP.2015.2511781
4. Baskey, H. B. and M. J. Akhtar, "Design of flexible hybrid nanocomposite structure based on frequency selective surface for wideband radar cross section reduction," IEEE Trans. Microw. Theory Techn., Vol. 65, 2019-2029, 2017.
doi:10.1109/TMTT.2017.2655045
5. Zheng, J. and S. J. Fang, "A new method for designing low RCS patch antenna using frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 58, 125-131, 2016.
doi:10.2528/PIERL15122702
6. Joozdani, M. Z., M. K. Amirhosseini, and A. Abdolali, "Wideband radar cross-section reduction of patch array antenna with miniaturized hexagonal loop frequency selective surface," Electronics Letters, Vol. 52, 767-768, 2016.
doi:10.1049/el.2016.0336
7. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, 2000.
doi:10.1002/0471723770
8. Yi, B., L. Yang, and P. Liu, "Design of miniaturized and ultrathin absorptive/transmissive radome based on interdigital square loops," Progress In Electromagnetics Research Letters, Vol. 62, 117-123, 2016.
doi:10.2528/PIERL16080201
9. Munk, B. A., Metamaterials: Critique and Alternatives, Wiley, 2009.
10. Chen, Q. and L. Liu, "Absorptive frequency selective surface using parallel LC resonance," Electronics Letters, Vol. 52, No. 6, 418-419, 2016.
doi:10.1049/el.2015.3885
11. Li, A., J. H. Fu, Z. F.Wang, W. Chen, L. Bo, and C. He, "An absorptive/transmissive radome based on metamaterial," IEEE Int. Conf. on Electronic Information and Communication Technology, 596-598, Harbin, China, August 2016.
12. Chen, Q., S. Yang, et al. "Design of absorptive/transmissive frequency-selective surface based on parallel resonance," IEEE Trans. Antennas Propag., Vol. 65, 4897-4902, 2017.
doi:10.1109/TAP.2017.2722875
13. Yu, D., P. Liu, Y. Dong, et al. "Active absorptive frequency selective surface," Electronics Letters, Vol. 53, 1087-1088, 2017.
doi:10.1049/el.2017.1168
14. Yi, B., P. Liu, C. Yang, et al. "Analysis of absorptive and transmissive radome," IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies, 616-619, 2015.
15. Yu, Y., Z. Shen, T. Deng, et al. "3-D frequency-selective rasorber with wide upper absorption band," IEEE Trans. Antennas Propag., Vol. 65, 4363-4367, 2017.
doi:10.1109/TAP.2017.2712812
16. Omar, A., Z. Shen, and H. Huang, "Absorptive frequency-selective reflection and transmission structures," IEEE Trans. Antennas Propag., Vol. 65, 6173-6178, 2017.
doi:10.1109/TAP.2017.2754463
17. Han, Y. and W. Che, "Switchable low-profile broadband frequency-selective rasorber/absorber based on slot arrays," IEEE Trans. Antennas Propag., Vol. 65, 6998-7008, 2017.
doi:10.1109/TAP.2017.2759964
18. Huang, H. and Z. Shen, "Absorptive frequency-selective transmission structure with square loop hybrid resonator," IEEE Antennas Wireless. Propag. Lett., Vol. 16, 3212-3215, 2017.
doi:10.1109/LAWP.2017.2769093
19. Abadi, S. M. A. M. H., J. H. Booske, and N. Behdad, "Exploiting mechanical flexure as a means of tuning the responses of large-scale periodic structures," IEEE Trans. Antennas Propag., Vol. 64, 933-943, 2016.
doi:10.1109/TAP.2015.2513418
20. Jiao, J., N.-X. Xu, X. G. Feng, et al. "Tunable complementary frequency selective surfaces based on cross-elements," Guangxue Jingmi Gongcheng/Optics & Precision Engineering, Vol. 22, 1430-1437, 2014.