Vol. 76
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-05-27
A Novel Compact Microstrip Balun Bandpass Filter Design Using Interdigital Capacitor Loaded Open Loop Resonators
By
Progress In Electromagnetics Research Letters, Vol. 76, 47-53, 2018
Abstract
A novel microstrip balun bandpass filter (BPF) is designed by using open loop resonators having interdigital capacitors. The interdigital capacitors are employed to control the center frequency easily. Opposite phase difference between the balanced outputs can be provided according to the suitable coupling topologies based on parallel and anti-parallel coupled lines. By this way, minimized magnitude imbalances between the balanced ports can also be obtained. In order to obtain two poles inside the passband, two identical resonators are coupled to each other. The designed balun BPF was fabricated and measured to validate the proposed methodology. Phase and magnitude imbalances inside the passband were measured within 180±5˚ and 0.5 dB, respectively. The simulated and measured results are in good agreement.
Citation
Ali Kursad Gorur, "A Novel Compact Microstrip Balun Bandpass Filter Design Using Interdigital Capacitor Loaded Open Loop Resonators," Progress In Electromagnetics Research Letters, Vol. 76, 47-53, 2018.
doi:10.2528/PIERL18010926
References

1. Kang, S. J. and H. Y. Hwang, "Ring-balun-bandpass filter with harmonic suppression," IET Microwaves, Antennas & Propagation, Vol. 4, No. 11, 1847-1854, Nov. 2010.
doi:10.1049/iet-map.2009.0295

2. Jung, E. Y. and H. Y. Hwang, "A balun-BPF using a dual mode ring resonator," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 9, 652-654, Sep. 2007.
doi:10.1109/LMWC.2007.903442

3. Sun, S. and W. Menzel, "Novel dual-mode balun bandpass filters using single cross-slotted patch resonator," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 8, 415-417, Aug. 2011.
doi:10.1109/LMWC.2011.2158535

4. Gorur, A., "Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter applications," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 2, 671-677, Feb. 2004.
doi:10.1109/TMTT.2003.822033

5. Huang, F., J. Wang, and L. Zhu, "A new approach to design a microstrip dual-mode balun bandpass filter," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 4, 252-254, Apr. 2016.
doi:10.1109/LMWC.2016.2538726

6. Kang, W., H. Wang, C. Miao, C. Tan, and W. Wu, "A high performance balun bandpass filter with very simple structure," Progress In Electromagnetics Research Letters, Vol. 31, 169-176, 2012.
doi:10.2528/PIERL12030406

7. Chen, C. M., S. J. Chang, S. M. Wu, Y. T. Hsieh, and C. F. Yang, "Investigation of compact balun-bandpass filter using folded open-loop ring resonators and microstrip lines," Mathematical Problems in Engineering, Vol. 2014, 1-6, Article ID 679538, 2014.

8. Xu, J. X., X. Y. Zhang, and X. L. Zhao, "Compact LTCC balun with bandpass response based on Marchand balun," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 7, 493-495, Jul. 2016.
doi:10.1109/LMWC.2016.2574832

9. Tsai, C. L. and Y. S. Lin, "Analysis and design of new single-to-balanced multicoupled line bandpass filters using low-temperature co-fired ceramic technology," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 12, 2902-2912, Dec. 2008.
doi:10.1109/TMTT.2008.2007186

10. Wu, L.-S., Y.-X. Guo, J.-F. Mao, and W.-Y. Yin, "Design of a substrate integrated waveguide balun filter based on three-port coupled resonator circuit model," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 5, 252-254, May 2011.
doi:10.1109/LMWC.2011.2116776

11. Hong, J. S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, 2001.
doi:10.1002/0471221619

12. Sonnet User’s Manual, Version 16, Sonnet Software, 2016.