1. Datta, S., Quantum Transport: Atom to Transistor, Cambridge University Press, 2005.
doi:10.1017/CBO9781139164313
2. Soriano, A., A. E. Navarro, A. J. Porti, and V. Such, "Analysis of the finite difference time domain technique to solve the Schrodinger equation for quantum devices," J. Appl. Phys., Vol. 95, No. 12, 8011-8018, 2004.
doi:10.1063/1.1753661
3. Sullivan, D. M. and D. S. Citrin, "Determining quantum eigenfunctions in three dimensional nanoscale structures," J. Appl. Phys., Vol. 97, No. 10, 581-592, 2005.
doi:10.1063/1.1896437
4. Cai, J. X. and Y. S. Wang, "A conservative Fourier pseudospectral algorithm for a coupled nonlinear Schrödinger system," Chin. Phys. B, Vol. 22, No. 6, 135-140, 2013.
doi:10.1088/1674-1056/22/6/060207
5. He, J. P., L. F. Shen, Q. Zhang, and S. L. He, "A pseudospectral time-domain algorithm for calculating the band structure of a two-dimensional photonic crystal," Chin. Phys. Lett., Vol. 19, No. 4, 507-510, 2002.
doi:10.1088/0256-307X/19/4/318
6. Liu, Q. H., "The PSTD algorithm: A time-domain method requiring only two cells per wavelength," Microw. Opt. Technol. Lett., Vol. 15, 158-165, 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3
7. Brendan, B. G., "Improved numerical cherenkov instability suppression in the generalized PSTD PIC algorithm," Computer Physics Communications, Vol. 196, 221-225, 2015.
8. Mechthild, T. and J. Siam, "Convergenceanalysis of high-order time-spliting pseudospectral methods for nonlinear Schrödinger equation," SIAM J. Numer. Anal., Vol. 50, No. 6, 3231-3258, 2012.
doi:10.1137/120866373
9. Shi, Y. and C. H. Liang, "Analysis of the left-handed metamaterials using multi-domain pseudospectral time-domain algorithm," Progress In Electromagnetics Research, Vol. 51, 153-165, 2005.
doi:10.2528/PIER04092301
10. Sanz, J. M. and M. P. Calvo, Numerical Hamiltonian Problems, Vol. 64, No. 5, 21-24, Mathematics of Computation, 1994.
doi:10.1007/978-1-4899-3093-4
11. Sheu, T. W. H., R. Y. Chung, and J. H. Li, "Development of a symplectic scheme with optimized numerical dispersion-relation equation to solve Maxwell’s equations in dispersive media," Progress In Electromagnetics Research, Vol. 132, 517-549, 2012.
doi:10.2528/PIER12080901
12. Guyenne, P., D. Nicholls, and C. Sulem, Hamiltonian Partial Differential Equations and Applications, Springer, 2015.
doi:10.1007/978-1-4939-2950-4
13. Tao, M., "Explicit symplectic approximation of nonseparable Hamiltonians: Algorithm and long time performance," Physical Review E, Vol. 94, No. 4, 3303, 2016.
doi:10.1103/PhysRevE.94.043303
14. Sun, Y. and P. S. P. Tse, "Symplectic and multisymplectic numerical methods for Maxwells equations," J. Comput. Phys., Vol. 230, No. 5, 2076-2094, 2011.
doi:10.1016/j.jcp.2010.12.006
15. Monovasilis, T., Z. Kalogiratou, and T. E. Simos, "Families of third and fourth algebraic order trigonometrically fitted symplectic methods for the numerical integration of Hamiltonian systems," Comput. Phys. Commun., Vol. 177, No. 10, 757-763, 2007.
doi:10.1016/j.cpc.2007.05.020
16. Chen, Z. X., X. You, and W. Shi, "Symmetric and symplectic ERKN methods for oscillatory Hamiltonian systems," Comput. Phys. Commun., Vol. 183, No. 1, 86-98, 2012.
doi:10.1016/j.cpc.2011.09.002
17. Shen, J., W. Sha, Z. X. Huang, M. S. Chen, and X. L. Wu, "High-order symplectic FDTD scheme for solving a time-dependent Schrödinger equation," Comput. Phys. Commun., Vol. 184, 480-492, 2013.
doi:10.1016/j.cpc.2012.09.032
18. Gray, S. K. and D. E. Manolopoulos, "Symplectic integrators tailored to the time-dependent Schrödinger equation," J. Chem. Phys., Vol. 104, No. 18, 7099-7112, 1996.
doi:10.1063/1.471428
19. Yoshida, H., "Construction of higher-order symplectic integrators," Phys. Lett. A, Vol. 150, No. 5, 262-268, 2008.
20. Sha, W., Z. X. Huang, M. S. Chen, and X. L. Wu, "Survey on symplectic finite-difference time-domain schemes for Maxwell’s equations," IEEE Trans. Antennas Propag., Vol. 56, No. 2, 493-500, 2008.
doi:10.1109/TAP.2007.915444