Vol. 73
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-03-05
A New Microstrip-to-Microstrip Vertical Transition Structure for Ultra-Wideband (UWB) Applications
By
Progress In Electromagnetics Research Letters, Vol. 73, 133-136, 2018
Abstract
A new microstrip-to-microstrip vertical transition structure for ultra-wideband (UWB) applications is proposed in this paper. The transition consists of a low impedance microstrip ring stub and a couple of slotline square multiple-mode resonators (MMRs) on the common ground plane. The low impedance microstrip ring stubs are realized by the connection of three single stubs in parallel, and the high-impedance section of slotline SIR is realized by the connection of four single stubs in series. The simulated and measured results are in good agreement, showing good wideband filtering performance with ultra-wideband fractional bandwidth.
Citation
Lihua Wu, and Chengpei Tang, "A New Microstrip-to-Microstrip Vertical Transition Structure for Ultra-Wideband (UWB) Applications," Progress In Electromagnetics Research Letters, Vol. 73, 133-136, 2018.
doi:10.2528/PIERL17120606
References

1. Revision of Part 15 of the Commission’s rules regarding ultra-wideband transmission systems, First Note and Order Federal Communications Commission, ET-Docket 98–153, 2002.

2. Valois, R., D. Baillargeat, S. Verdyme, M. Lahti, and T. Jaakola, "High performances of shielded LTCC vertical transitions from DC up to 50GHz," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 6, 2026-2032, Jun. 2005.
doi:10.1109/TMTT.2005.848832

3. Chen, C., M. Tsai, and G. Alexopoulos, "Optimization of aperture transitions for multi-port microstrip circuits," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 12, 2457-2465, Dec. 1996.
doi:10.1109/22.554578

4. Zhu, L. and K. Wu, "Ultra broadband vertical transition for multilayer integrated circuits," IEEE Microw. Guided Wave Lett., Vol. 9, No. 11, 453-455, Nov. 1999.
doi:10.1109/75.808032

5. Abbosh, M., "Ultra wideband vertical microstrip-microstrip transition," IET Microw. Antennas Propag., Vol. 1, No. 5, 968-972, Oct. 2007.
doi:10.1049/iet-map:20070043

6. Huang, X. and K.-L. Wu, "A broadband and vialess vertical microstrip-to-microstrip transition," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 4, 938-944, Jan. 2012.
doi:10.1109/TMTT.2012.2185945

7. Li, E. S., J. Cheng, and C. Lai, "Designs for broadband microstrip vertical transitions using cavity couplers," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 1, 464-472, Jan. 2006.
doi:10.1109/TMTT.2005.860495

8. Soltysiak, P. and J. Chramiec, "Design of broadband transitions from microstrip to slotline," Electron. Lett., Vol. 30, No. 4, 328-329, 1994.
doi:10.1049/el:19940200