Vol. 74
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-03-20
Frequency Tunable Low Cost Microwave Absorber for EMI/EMC Application
By
Progress In Electromagnetics Research Letters, Vol. 74, 47-52, 2018
Abstract
A frequency tunable multi-layer low cost microwave absorber is proposed for Ku and X bands of applications. The tunability is obtained with the cavity model design using two metallic layers; a frequency selective surface (FSS) layer and a metal backed substrate layer with the air gap between them. The change in air-gap results in variation of the effective substrate height, and as a consequences the resonant frequency is tuned. The coupling of LC resonance and cavity resonance at an air-gap of 7.5 mm results in a dual-band absorption of the design. The proposed absorber performance has been analyzed for both TE and TM polarizations of incident wave, and the results are found to be same. The studies on surface current distribution and incident angle variation are observed to get physical insight behind absorption. The waveguide measurement method is used to correlate the simulated results with the measured one. With this simple cost efficient design, the absorber appears well suited for EMI/ EMC application at X and Ku bands.
Citation
Gobinda Sen, and Santanu Das, "Frequency Tunable Low Cost Microwave Absorber for EMI/EMC Application," Progress In Electromagnetics Research Letters, Vol. 74, 47-52, 2018.
doi:10.2528/PIERL17120601
References

1. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

2. Rufangura, P. and C. Sabah, "Polarisation insensitive tunable metamaterial perfect absorber for solar cells applications," IET Optoelectronics, Vol. 10, No. 6, 12, 2016.
doi:10.1049/iet-opt.2016.0003

3. Grant, J., et al. "Polarization-insensitive terahertz metamaterial absorber," Opt. Lett., Vol. 36, No. 8, April 2011.

4. Zhu, W. and X. Zhao, "Metamaterial absorber with dendritic cells at infrared frequencies," J. Opt. Soc. Amer. B, Vol. 26, No. 26, 2382-2385, December 2009.
doi:10.1364/JOSAB.26.002382

5. Gong, Y., et al. "Highly flexible all-optical metamaterial absorption switching assisted by Kerrnonlinear effect," Opt. Express, Vol. 19, No. 11, 10193-10198, 2011.
doi:10.1364/OE.19.010193

6. Zhai, H., et al. "A new tunable dual-band metamaterial absorber with wide-angle TE and TM polarization stability," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 6, 774-785, 2015.
doi:10.1080/09205071.2015.1024335

7. Wang, B. X., L. L. Wang, G. Z. Wang, W. Q. Huang, X. F. Li, and X. Zhai, "Frequency continuous tunable terahertz metamaterial absorber," J. Lighwave Technol., Vol. 32, 1183-1189, 2014.
doi:10.1109/JLT.2014.2300094

8. Zhao, J., Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, and T. J. Cui, "A tunable metamaterial absorber using varactor diodes," New J. Phys., Vol. 15, 043049, 2013.
doi:10.1088/1367-2630/15/4/043049

9. Lin, B. Q., S. H. Zhao, W. Wei, X. Y. Da, Q. R. Zheng, H. Y. Zhang, and M. Zhu, "Design of a tunable frequency selective surface absorber as a loaded receiving antenna array," Chin. Phys. B, Vol. 23, 024201, 2014.
doi:10.1088/1674-1056/23/2/024201

10. Zheng, H. Y., X. R. Jin, J. W. Park, Y. H. Lu, J. Y. Rhee, W. H. Jang, H. Cheong, and Y. P. Lee, "Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance," Opt. Express, Vol. 20, 24002-24009, 2012.
doi:10.1364/OE.20.024002

11. Chen, J., Z. Hu, G. Wang, X. Huang, S. Wang, X. Hu, and M. Liu, "High-impedance surface-based broadband absorbers with interference theory," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, 4367-4374, October 2015.
doi:10.1109/TAP.2015.2459138

12. Collin, R. E., Foundations for Microwave Engineering, 2nd Ed., 501, Wiley-IEEE Press, January 2001.
doi:10.1109/9780470544662

13. Zhai, H., C. Zhan, L. Liu, and Y. Zang, "Reconfigurable wideband metamaterial absorber with wide angle and polarization stability," Electronics Letters, Vol. 51, No. 21, 1624-1626, October 8, 2015.
doi:10.1049/el.2015.1557

14. You, J. W., J. F. Zhang, W. X. Jiang, H. F. Ma, W. Z. Cui, and T. J. Cui, "Accurate analysis of finite-volume lumped elements in metamaterial absorber design," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 7, 1966-1975, July 2016.
doi:10.1109/TMTT.2016.2572180

15. Li, L., Y. Yang, and C. H. Liang, "A wide-angle polarization insensitive ultra-thin metamaterial absorber with three resonant modes," J. Appl. Phys., Vol. 110, 063702, 2011.
doi:10.1063/1.3638118