Vol. 160
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-01-22
Optical Biosensing and Bioimaging with Porous Silicon and Silicon Quantum Dots (Invited Review)
By
Progress In Electromagnetics Research, Vol. 160, 103-121, 2017
Abstract
Citation
Xiaoyu Cheng, and Bin Guan, "Optical Biosensing and Bioimaging with Porous Silicon and Silicon Quantum Dots (Invited Review)," Progress In Electromagnetics Research, Vol. 160, 103-121, 2017.
doi:10.2528/PIER17120504
References

1. Priolo, F., T. Gregorkiewicz, M. Galli, and T. F. Krauss, "Silicon nanostructures for photonics and photovoltaics," Nature Nanotechnology, Vol. 9, 19, 2014.
doi:10.1038/nnano.2013.271

2. Chan, C. K., H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, "Highperformance lithium battery anodes using silicon nanowires," Nature Nanotechnology, Vol. 3, 31, 2007.
doi:10.1038/nnano.2007.411

3. Peng, F., Y. Su, Y. Zhong, C. Fan, S.-T. Lee, and Y. He, "Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy," Accounts Chem. Res., Vol. 47, No. 2, 612-623, 2014.
doi:10.1021/ar400221g

4. Liu, J., F. Erogbogbo, K.-T. Yong, L. Ye, J. Liu, R. Hu, H. Chen, Y. Hu, Y. Yang, J. Yang, I. Roy, N. A. Karker, M. T. Swihart, and P. N. Prasad, "Assessing clinical prospects of silicon quantum dots: Studies in mice and monkeys," ACS Nano, 2013.

5. Anglin, E. J., L. Y. Cheng, W. R. Freeman, and M. J. Sailor, "Porous silicon in drug delivery devices and materials," Adv. Drug Deliver Rev., Vol. 60, No. 11, 1266-1277, 2008.
doi:10.1016/j.addr.2008.03.017

6. Cheng, X., S. B. Lowe, P. J. Reece, and J. J. Gooding, "Colloidal silicon quantum dots: From preparation to the modification of self-assembled monolayers (SAMs) for bio-applications," Chem. Soc. Rev., Vol. 43, No. 8, 2680-2700, 2014.
doi:10.1039/C3CS60353A

7. McVey, B. F. and R. D. Tilley, "Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals," Acc Chem. Res., Vol. 47, No. 10, 3045-3051, 2014.
doi:10.1021/ar500215v

8. Uhlir, A., "Electrolytic Shaping of Germanium and silicon," Bell Syst. Tech. J., Vol. 35, 333-347, 1956.
doi:10.1002/j.1538-7305.1956.tb02385.x

10. Lin, V. S.-Y., K. Motesharei, K.-P. S. Dancil, M. J. Sailor, and M. R. Ghadiri, "A porous siliconbased optical interferometric biosensor," Science, Vol. 278, No. 5339, 840-843, 1997.
doi:10.1126/science.278.5339.840

11. Jane, A., R. Dronov, A. Hodges, and N. H. Voelcker, "Porous silicon biosensors on the advance," Trends Biotechnol., Vol. 27, 230-239, 2009.
doi:10.1016/j.tibtech.2008.12.004

12. Dhanekar, S. and S. Jain, "Porous silicon biosensor: Current status," Biosensors and Bioelectronics, Vol. 41, 54-64, 2013.
doi:10.1016/j.bios.2012.09.045

13. Harraz, F. A., "Porous silicon chemical sensors and biosensors: A review," Sensors and Actuators B: Chemical, Vol. 202, 897-912, 2014.
doi:10.1016/j.snb.2014.06.048

14. Shtenberg, G. and E. Segal, "Porous silicon optical biosensors," Handbook of Porous Silicon, L. Canham (ed.), 857-868, Springer, Switzerland, 2014.

15. Fathauer, R. W., T. George, A. Ksendzov, and R. P. Vasquez, "Visible luminescence from silicon wafers subjected to stain etches," Applied Physics Letters, Vol. 60, No. 8, 995-997, 1992.
doi:10.1063/1.106485

16. Pyatilova, O. V., S. A. Gavrilov, Y. I. Shilyaeva, A. A. Pavlov, Y. P. Shaman, and A. A. Dudin, "Influence of the doping type and level on the morphology of porous Si formed by galvanic etching," Semiconductors, Vol. 51, No. 2, 173-177, 2017.
doi:10.1134/S1063782617020178

17. Li, X. and P. W. Bohn, "Metal-assisted chemical etching in HF/H2O2 produces porous silicon," Applied Physics Letters, Vol. 77, No. 16, 2572-2574, 2000.
doi:10.1063/1.1319191

18. Balderas-Valadez, R. F., V. Agarwal, and C. Pacholski, "Fabrication of porous silicon-based optical sensors using metal-assisted chemical etching," RSC Advances, Vol. 6, No. 26, 21430-21434, 2016.
doi:10.1039/C5RA26816H

19. Zhao, M., R. Balachandran, J. Allred, and M. Keswani, "Synthesis of porous silicon through interfacial reactions and measurement of its electrochemical response using cyclic voltammetry," RSC Advances, Vol. 5, No. 96, 79157-79163, 2015.
doi:10.1039/C5RA14592A

20. Rauscher, M. and H. Spohn, "Porous silicon formation and electropolishing," Physical Review E, Vol. 64, No. 3, 031604, 2001.
doi:10.1103/PhysRevE.64.031604

21. Canham, L., "Porous silicon formation by anodisation," Properties of Porous Silicon, Vol. 1, 12, Halimaoui, A., Ed., IEE, London; L. Canham Ed., 1997.

22. Cullis, A., L. Canham, and P. Calcott, "The structural and luminescence properties of porous silicon," J. Appl. Phys., Vol. 82, 909, 1997.
doi:10.1063/1.366536

23. Theiss, W., "Optical properties of porous silicon," Surf. Sci. Rep., Vol. 29, 91-192, 1997.
doi:10.1016/S0167-5729(96)00012-X

24. Vincent, G., "Optical properties of porous silicon superlattices," Appl. Phys. Lett., Vol. 64, 2367, 1994.
doi:10.1063/1.111982

25. Mazzoleni, C. and L. Pavesi, "Application to optical components of dielectric porous silicon multilayers," Appl. Phys. Lett., Vol. 67, No. 20, 2983-2985, 1995.
doi:10.1063/1.114833

26. Berger, M. G., C. Dieker, M. Thoenissen, L. Vescan, H. Lueth, H. Muender, W. Theiss, M. Wernke, and P. Grosse, "Porosity superlattices: a new class of Si heterostructures," J. Phys. D, Vol. 27, No. 6, 1333, 1994.
doi:10.1088/0022-3727/27/6/035

27. Berger, M. G., M. Thoenissen, R. Arens-Fischer, H. Munder, H. Luth, M. Arntzen, W. Thei, "Investigation and design of optical properties of porosity superlattices," Thin Solid Films, Vol. 255, No. 1–2, 313-316, 1995.
doi:10.1016/0040-6090(94)05617-M

28. Frohnhoff, S. and M. G. Berger, "Porous silicon superlattices," Adv. Mater., Vol. 6, No. 12, 963-965, 1994.
doi:10.1002/adma.19940061214

29. Pellegrini, V., A. Tredicucci, C. Mazzoleni, and L. Pavesi, "Enhanced optical properties in porous silicon microcavities," Physical Review B, Vol. 52, No. 20, R14328, 1995.
doi:10.1103/PhysRevB.52.R14328

30. Pavesi, L., C. Mazzoleni, A. Tredicucci, and V. Pellegrini, "Controlled photon emission in porous silicon microcavities," Appl. Phys. Lett., Vol. 67, No. 22, 3280-3282, 1995.
doi:10.1063/1.115220

31. Lorenzo, E., C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, and L. Pavesi, "Porous silicon-based rugate filters," Appl. Opt., Vol. 44, No. 26, 5415-5421, 2005.
doi:10.1364/AO.44.005415

32. Berger, M. G., R. Arens-Fischer, M. Thonissen, M. Kruger, S. Billat, H. Luth, S. Hilbrich, W. Theiß, P. Grosse, "Dielectric filters made of PS: Advanced performance by oxidation and new layer structures," Thin Solid Films, Vol. 297, No. 1–2, 237-240, 1997.
doi:10.1016/S0040-6090(96)09361-3

33. Arrand, H. F., T. M. Benson, P. Sewell, A. Loni, R. J. Bozeat, R. Arens-Fischer, M. Kruger, M. Thonissen, and H. Luth, "The application of porous silicon to optical waveguiding technology," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 4, No. 6, 975-982, 1998.
doi:10.1109/2944.736088

34. Loni, A., L. T. Canham, M. G. Berger, R. Arens-Fischer, H. Munder, H. Luth, H. F. Arrand, and T. M. Benson, "Porous silicon multilayer optical waveguides," Thin Solid Films, Vol. 276, No. 1–2, 143-146, 1996.
doi:10.1016/0040-6090(95)08075-9

35. Nagata, S., C. Domoto, T. Nishimura, and K. Iwameji, "Single-mode optical waveguide fabricated by oxidization of selectively doped titanium porous silicon," Appl. Phys. Lett., Vol. 72, No. 23, 2945-2947, 1998.
doi:10.1063/1.121502

36. Ferrand, P., R. Romestain, and J. C. Vial, "Photonic band-gap properties of a porous silicon periodic planar waveguide," Physical Review B, Vol. 63, No. 11, 115106, 2001.
doi:10.1103/PhysRevB.63.115106

37. Sapienza, R., P. Costantino, D. Wiersma, M. Ghulinyan, C. J. Oton, and L. Pavesi, "Optical analogue of electronic bloch oscillations," Phys. Rev. Lett., Vol. 91, No. 26, 263902, 2003.
doi:10.1103/PhysRevLett.91.263902

38. Guillermain, E., V. Lysenko, R. Orobtchouk, T. Benyattou, S. Roux, A. Pillonnet, and P. Perriat, "Bragg surface wave device based on porous silicon and its application for sensing," Appl. Phys. Lett., Vol. 90, No. 24, 241116-3, 2007.
doi:10.1063/1.2747671

39. Dal Negro, L., C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light transport through the band-edge states of fibonacci quasicrystals," Phys. Rev. Lett., Vol. 90, No. 5, 055501, 2003.
doi:10.1103/PhysRevLett.90.055501

40. Sailor, M. J. and E. C. Wu, "Photoluminescence-based sensing with porous silicon films, microparticles, and nanoparticles," Advanced Functional Materials, Vol. 19, No. 20, 3195-3208, 2009.
doi:10.1002/adfm.200900535

41. Spanier, J. E. and I. P. Herman, "Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films," Physical Review B, Vol. 61, No. 15, 10437, 2000.
doi:10.1103/PhysRevB.61.10437

42. Syshchyk, O., V. A. Skryshevsky, O. O. Soldatkin, and A. P. Soldatkin, "Enzyme biosensor systems based on porous silicon photoluminescence for detection of glucose, urea and heavy metals," Biosensors and Bioelectronics, Vol. 66, 89-94, 2015.
doi:10.1016/j.bios.2014.10.075

43. Melnyk, Y., K. Pavlova, V. Myndrul, R. Viter, V. Smyntyna, and I. Iatsunskyi, "Porous silicon photoluminescence biosensor for rapid and sensitive detection of toxins," SPIE Organic Photonics+ Electronics, 6, SPIE, 2017.

44. Myndrul, V., R. Viter, M. Savchuk, M. Koval, N. Starodub, V. Silamikelis, V. Smyntyna, A. Ramanavicius, and I. Iatsunskyi, "Gold coated porous silicon nanocomposite as a substrate for photoluminescence-based immunosensor suitable for the determination of Aflatoxin B1," Talanta, Vol. 175, 297-304, 2017.
doi:10.1016/j.talanta.2017.07.054

45. Park, J.-H., L. Gu, G. von Maltzahn, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, "Biodegradable luminescent porous silicon nanoparticles for in vivo applications," Nat. Mater., Vol. 8, No. 4, 331-336, 2009.
doi:10.1038/nmat2398

46. Gu, L., D. J. Hall, Z. Qin, E. Anglin, J. Joo, D. J. Mooney, S. B. Howell, and M. J. Sailor, "In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles," Nature Communication, Vol. 4, 2326, 2013.

47. Kim, D., J. Kang, T. Wang, H. G. Ryu, J. M. Zuidema, J. Joo, M. Kim, Y. Huh, J. Jung, K. H. Ahn, K. H. Kim, and M. J. Sailor, "Two-photon in vivo imaging with porous silicon nanoparticles," Adv. Mater., Vol. 29, No. 39, 1703309, 2017.
doi:10.1002/adma.201703309

48. Chen, X., F. Wo, Y. Jin, J. Tan, Y. Lai, and J. Wu, "Drug-porous silicon dual luminescent system for monitoring and inhibition of wound infection," ACS Nano, Vol. 11, No. 8, 7938-7949, 2017.
doi:10.1021/acsnano.7b02471

49. Song, S., L. Wang, J. Li, C. Fan, and J. Zhao, "Aptamer-based biosensors," TrAC Trends in Analytical Chemistry, Vol. 27, No. 2, 108-117, 2008.
doi:10.1016/j.trac.2007.12.004

50. Urmann, K., J.-G. Walter, T. Scheper, and E. Segal, "Label-free optical biosensors based on aptamer-functionalized porous silicon scaffolds," Analytical Chemistry, Vol. 87, No. 3, 1999-2006, 2015.
doi:10.1021/ac504487g

51. Hamula, C. L. A., H. Zhang, F. Li, Z. Wang, X. Chris Le, and X.-F. Li, "Selection and analytical applications of aptamers binding microbial pathogens," TrAC Trends in Analytical Chemistry, Vol. 30, No. 10, 1587-1597, 2011.
doi:10.1016/j.trac.2011.08.006

52. Urmann, K., S. Arshavsky-Graham, J. G. Walter, T. Scheper, and E. Segal, "Whole-cell detection of live lactobacillus acidophilus on aptamer-decorated porous silicon biosensors," Analyst, Vol. 141, No. 18, 5432-5440, 2016.
doi:10.1039/C6AN00810K

53. Tombelli, S., M. Minunni, and M. Mascini, "Analytical applications of aptamers," Biosensors and Bioelectronics, Vol. 20, No. 12, 2424-2434, 2005.
doi:10.1016/j.bios.2004.11.006

54. Mairal, T., V. Cengiz Ozalp, P. Lozano Sanchez, M. Mir, I. Katakis, and C. K. O’Sullivan, "Aptamers: Molecular tools for analytical applications," Analytical and Bioanalytical Chemistry, Vol. 390, No. 4, 989-1007, 2008.
doi:10.1007/s00216-007-1346-4

55. Kirsch, J., C. Siltanen, Q. Zhou, A. Revzin, and A. Simonian, "Biosensor technology: Recent advances in threat agent detection and medicine," Chemical Society Reviews, Vol. 42, No. 22, 8733-8768, 2013.
doi:10.1039/c3cs60141b

56. Chhasatia, R., M. J. Sweetman, F. J. Harding, M. Waibel, T. Kay, H. Thomas, T. Loudovaris, and N. H. Voelcker, "Non-invasive, in vitro analysis of islet insulin production enabled by an optical porous silicon biosensor," Biosensors and Bioelectronics, Vol. 91, 515-522, 2017.
doi:10.1016/j.bios.2017.01.004

57. Urmann, K., P. Reich, J.-G. Walter, D. Beckmann, E. Segal, and T. Scheper, "Rapid and label-free detection of protein a by aptamer-tethered porous silicon nanostructures," Journal of Biotechnology, Vol. 257, 171-177, 2017.
doi:10.1016/j.jbiotec.2017.01.005

58. Tenenbaum, E. and E. Segal, "Optical biosensors for bacteria detection by a peptidomimetic antimicrobial compound," Analyst, Vol. 140, No. 22, 7726-7733, 2015.
doi:10.1039/C5AN01717C

59. Naveas, N., J. Hernandez-Montelongo, R. Pulido, V. Torres-Costa, R. Villanueva-Guerrero, J. P. Garcıa Ruiz, and M. Manso-Silva, "Fabrication and characterization of a chemically oxidized-nanostructured porous silicon based biosensor implementing orienting protein A," Colloids and Surfaces B: Biointerfaces, Vol. 115, 310-316, 2014.
doi:10.1016/j.colsurfb.2013.11.026

60. Mariani, S., L. M. Strambini, and G. Barillaro, "Femtomole detection of proteins using a label-free nanostructured porous silicon interferometer for perspective ultrasensitive biosensing," Analytical Chemistry, Vol. 88, No. 17, 8502-8509, 2016.
doi:10.1021/acs.analchem.6b01228

61. Mariani, S., L. Pino, L. M. Strambini, L. Tedeschi, and G. Barillaro, "10 000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors," ACS Sensors, Vol. 1, No. 12, 1471-1479, 2016.
doi:10.1021/acssensors.6b00634

62. Mariani, S., L. M. Strambini, L. Tedeschi, and G. Barillaro, "Interferogram average over wavelength spectroscopy: An ultrasensitive technique for biosensing with porous silicon interferometers," ECS Transactions, Vol. 77, No. 11, 1815-1823, 2017.
doi:10.1149/07711.1815ecst

63. Vilensky, R., M. Bercovici, and E. Segal, "Oxidized porous silicon nanostructures enabling electrokinetic transport for enhanced DNA detection," Adv. Funct. Mater., Vol. 25, No. 43, 6725-6732, 2015.
doi:10.1002/adfm.201502859

64. Arshavsky-Graham, S., R. Vilenski, F. Faratore, M. Bercovici, and E. Segal, "1,000-fold sensitivity enhancement of porous Si-based optical biosensors for nucleic acid and proteins detection," Optics in the Life Sciences Congress, Optical Society of America, , , OmM4D.6, 2017.
doi:10.1364/OMP.2017.OmM4D.6

65. Nair, P. R. and M. A. Alam, "Performance limits of nanobiosensors," Applied Physics Letters, Vol. 88, No. 23, 233120, 2006.
doi:10.1063/1.2211310

66. Sheehan, P. E. and L. J. Whitman, "Detection limits for nanoscale biosensors," Nano Letters, Vol. 5, No. 4, 803-807, 2005.
doi:10.1021/nl050298x

67. Kumar, N., E. Froner, R. Guider, M. Scarpa, and P. Bettotti, "Investigation of non-specific signals in nanoporous flow-through and flow-over based sensors," Analyst, Vol. 139, No. 6, 1345-1349, 2014.
doi:10.1039/c3an01996a

68. Zhao, Y., G. Gaur, S. T. Retterer, P. E. Laibinis, and S. M. Weiss, "Flow-through porous silicon membranes for real-time label-free biosensing," Analytical Chemistry, Vol. 88, No. 22, 10940-10948, 2016.
doi:10.1021/acs.analchem.6b02521

69. Gupta, B., K. Mai, S. B. Lowe, D. Wakefield, N. Di Girolamo, K. Gaus, P. J. Reece, and J. J. Gooding, "Ultrasensitive and specific measurement of protease activity using functionalized photonic crystals," Analytical Chemistry, Vol. 87, No. 19, 9946-9953, 2015.
doi:10.1021/acs.analchem.5b02529

70. Soeriyadi, A. H., B. Gupta, P. J. Reece, and J. J. Gooding, "Optimising the enzyme response of a porous silicon photonic crystal via the modular design of enzyme sensitive polymers," Polymer Chemistry, Vol. 5, No. 7, 2333-2341, 2014.
doi:10.1039/C3PY01638B

71. Rong, G., J. D. Ryckman, R. L. Mernaugh, and S. M. Weiss, "Label-free porous silicon membrane waveguide for DNA sensing," Applied Physics Letters, Vol. 93, No. 16, 161109, 2008.
doi:10.1063/1.3005620

72. Rong, G., A. Najmaie, J. E. Sipe, and S. M. Weiss, "Nanoscale porous silicon waveguide for label-free DNA sensing," Biosensors and Bioelectronics, Vol. 23, No. 10, 1572-1576, 2008.
doi:10.1016/j.bios.2008.01.017

73. Wei, X., C. Kang, M. Liscidini, G. Rong, S. T. Retterer, M. Patrini, J. E. Sipe, and S. M. Weiss, "Grating couplers on porous silicon planar waveguides for sensing applications," J. Appl. Phys., Vol. 104, No. 12, 123113, 2008.
doi:10.1063/1.3043579

74. Wei, X. and S. M. Weiss, "Guided mode biosensor based on grating coupled porous silicon waveguide," Opt. Express, Vol. 19, 2011.
doi:10.1364/OE.19.011330

75. Wei, X., J. W. Mares, Y. D. Gao, D. Li, and S. M. Weiss, "Biomolecule kinetics measurements in flow cell integrated porous silicon waveguides," Biomed. Opt. Express, Vol. 3, 2012.

76. Qiao, H., A. H. Soeriyadi, B. Guan, P. J. Reece, and J. J. Gooding, "The analytical performance of a porous silicon Bloch surface wave biosensors as protease biosensor," Sensors and Actuators B: Chemical, Vol. 211, No. Supplement C, 469-475, 2015.
doi:10.1016/j.snb.2015.01.098

77. Zhao, Y., G. A. Rodriguez, Y. M. Graham, T. Cao, G. Gaur, and S. M. Weiss, "Resonant photonic structures in porous silicon for biosensing," SPIE BiOS, 10, 2017.

78. Rodriguez, G. A., J. D. Ryckman, Y. Jiao, and S. M. Weiss, "A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor," Biosensors and Bioelectronics, Vol. 53, 486-493, 2014.
doi:10.1016/j.bios.2013.10.028

79. Rodriguez, G. A., J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, "Porous silicon Bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules," Nanoscale Research Letters, Vol. 9, No. 1, 383, 2014.
doi:10.1186/1556-276X-9-383

80. Rodriguez, G. A., S. Hu, and S. M. Weiss, "Porous silicon ring resonator for compact, high sensitivity biosensing applications," Opt. Express, Vol. 23, No. 6, 7111-7119, 2015.
doi:10.1364/OE.23.007111

81. Krismastuti, F. S. H., S. Pace, and N. H. Voelcker, "Porous silicon resonant microcavity biosensor for matrix metalloproteinase detection," Advanced Functional Materials, Vol. 24, No. 23, 3639-3650, 2014.
doi:10.1002/adfm.201304053

82. Jenie, S. N. A., Z. Du, S. J. P. McInnes, P. Ung, B. Graham, S. E. Plush, and N. H. Voelcker, "Biomolecule detection in porous silicon based microcavities via europium luminescence enhancement," Journal of Materials Chemistry B, Vol. 2, No. 44, 7694-7703, 2014.
doi:10.1039/C4TB01409J

83. Jenie, S. N. A., B. Prieto-Simon, and N. H. Voelcker, "Development of l-lactate dehydrogenase biosensor based on porous silicon resonant microcavities as fluorescence enhancers," Biosensors and Bioelectronics, Vol. 74, 637-643, 2015.
doi:10.1016/j.bios.2015.07.025

84. Krismastuti, F. S. H., A. Cavallaro, B. Prieto-Simon, and N. H. Voelcker, "Toward multiplexing detection of wound healing biomarkers on porous silicon resonant microcavities," Advanced Science, Vol. 3, No. 6, 1500383, 2016.
doi:10.1002/advs.201500383

85. Jenie, S. N. A., S. E. Plush, and N. H. Voelcker, "Recent advances on luminescent enhancement-based porous silicon biosensors," Pharmaceutical Research, Vol. 33, No. 10, 2314-2336, 2016.
doi:10.1007/s11095-016-1889-1

86. Li, Y., Z. Jia, G. Lv, H. Wen, P. Li, H. Zhang, and J. Wang, "Detection of Echinococcus granulosus antigen by a quantum dot/porous silicon optical biosensor," Biomed. Opt. Express, Vol. 8, No. 7, 3458-3469, 2017.
doi:10.1364/BOE.8.003458

87. Alivisatos, A. P., "Perspectives on the physical chemistry of semiconductor nanocrystals," J. Phys. Chem.-Us, Vol. 100, No. 31, 13226-13239, 1996.
doi:10.1021/jp9535506

88. Bruchez, M., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, "Semiconductor nanocrystals as fluorescent biological labels," Science, Vol. 281, No. 5385, 2013-2016, 1998.
doi:10.1126/science.281.5385.2013

89. Dasog, M., J. Kehrle, B. Rieger, and J. G. C. Veinot, "Silicon nanocrystals and silicon-polymer hybrids: Synthesis, surface engineering, and applications," Angewandte Chemie International Edition, Vol. 55, No. 7, 2322-2339, 2016.
doi:10.1002/anie.201506065

90. Gonzalez, C. M. and J. G. C. Veinot, "Silicon nanocrystals for the development of sensing platforms," J. Mater. Chem. C, Vol. 4, No. 22, 4836-4846, 2016.
doi:10.1039/C6TC01159D

91. Su, Y., X. Ji, and Y. He, "Water-dispersible fluorescent silicon nanoparticles and their optical applications," Adv. Mater., Vol. 28, No. 47, 10567-10574, 2016.
doi:10.1002/adma.201601173

92. Peng, X., L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, "Shape control of CdSe nanocrystals," Nature, Vol. 404, No. 6773, 59-61, 2000.
doi:10.1038/35003535

93. McVey, B. F. P., J. Butkus, J. E. Halpert, J. M. Hodgkiss, and R. D. Tilley, "Solution synthesis and optical properties of transition-metal-doped silicon nanocrystals," The Journal of Physical Chemistry Letters, Vol. 6, No. 9, 1573-1576, 2015.
doi:10.1021/acs.jpclett.5b00589

94. Kramer, N. J., K. S. Schramke, and U. R. Kortshagen, "Plasmonic properties of silicon nanocrystals doped with boron and phosphorus," Nano Letters, Vol. 15, No. 8, 5597-5603, 2015.
doi:10.1021/acs.nanolett.5b02287

95. Dasog, M., G. B. De los Reyes, L. V. Titova, F. A. Hegmann, and J. G. Veinot, "Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups," ACS Nano, Vol. 8, No. 9, 9636-9648, 2014.
doi:10.1021/nn504109a

96. Sinelnikov, R., M. Dasog, J. Beamish, A. Meldrum, and J. G. C. Veinot, "Revisiting an ongoing debate: What role do surface groups play in silicon nanocrystal photoluminescence?," ACS Photonics, Vol. 4, No. 8, 1920-1929, 2017.
doi:10.1021/acsphotonics.7b00102

97. Herman, F., "The electronic energy band structure of silicon and germanium," Proceedings of the IRE, Vol. 43, No. 12, 1703-1732, 1955.
doi:10.1109/JRPROC.1955.278039

98. Heath, J. R., "A liquid-solution-phase synthesis of crystalline silicon," Science, Vol. 258, No. 5085, 1131-1133, 1992.
doi:10.1126/science.258.5085.1131

99. Jurbergs, D., E. Rogojina, L. Mangolini, and U. Kortshagen, "Silicon nanocrystals with ensemble quantum yields exceeding 60%," Appl. Phys. Lett., Vol. 88, No. 23, 2006.
doi:10.1063/1.2210788

100. Kelly, J. A., A. M. Shukaliak, M. D. Fleischauer, and J. G. Veinot, "Size-dependent reactivity in hydrosilylation of silicon nanocrystals," J. Am Chem. Soc., Vol. 133, No. 24, 9564-9571, 2011.
doi:10.1021/ja2025189

101. Cheng, X., R. Gondosiswanto, S. Ciampi, P. J. Reece, and J. J. Gooding, "One-pot synthesis of colloidal silicon quantum dots and surface functionalization via thiol-ene click chemistry," Chem. Commun. (Camb), Vol. 48, No. 97, 11874-11876, 2012.

102. Hessel, C. M., D. Reid, M. G. Panthani, M. R. Rasch, B. W. Goodfellow, J. Wei, H. Fujii, V. Akhavan, and B. A. Korgel, "Synthesis of ligand-stabilized silicon nanocrystals with sizedependent photoluminescence spanning visible to near-infrared wavelengths," Chem. Mater., Vol. 24, No. 2, 393-401, 2012.

103. Locritani, M., Y. Yu, G. Bergamini, M. Baroncini, J. K. Molloy, B. A. Korgel, and P. Ceroni, "Silicon nanocrystals functionalized with pyrene units: efficient light-harvesting antennae with bright near-infrared emission," J. Phys. Chem. Lett., Vol. 5, No. 19, 3325-3329, 2014.

104. Yu, Y., C. M. Hessel, T. D. Bogart, M. G. Panthani, M. R. Rasch, and B. A. Korgel, "Room temperature hydrosilylation of silicon nanocrystals with bifunctional terminal alkenes," Langmuir, Vol. 29, No. 5, 1533-1540, 2013.

105. Kang, Z., C. H. A. Tsang, Z. Zhang, M. Zhang, N.-B. Wong, J. A. Zapien, Y. Shan, and S.-T. Lee, "A polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: From quantum dots to nanowires," Journal of the American Chemical Society, Vol. 129, No. 17, 5326-5327, 2007.

106. Kang, Z. H., C. H. A. Tsang, N. B. Wong, Z. D. Zhang, and S. T. Lee, "Silicon quantum dots: A general photocatalyst for reduction, decomposition, and selective oxidation reactions," Journal of the American Chemical Society, Vol. 129, No. 40, 12090-12090+, 2007.

107. Hong, G., A. L. Antaris, and H. Dai, "Near-infrared fluorophores for biomedical imaging," Nature Biomedical Engineering, Vol. 1, 0010, 2017.

108. Zhong, Y., F. Peng, X. Wei, Y. Zhou, J. Wang, X. Jiang, Y. Su, S. Su, S.-T. Lee, and Y. He, "Microwave-assisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophilic ligands," Angewandte Chemie International Edition, Vol. 51, No. 34, 8485-8489, 2012.

109. Zhong, Y., F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.-T. Lee, and Y. He, "Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes," Journal of the American Chemical Society, Vol. 135, No. 22, 8350-8356, 2013.

110. He, Y., Y. L. Zhong, F. Peng, X. P. Wei, Y. Y. Su, Y. M. Lu, S. Su, W. Gu, L. S. Liao, and S. T. Lee, "One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots," Journal of the American Chemical Society, Vol. 133, No. 36, 14192-14195, 2011.

111. Hua, F., M. T. Swihart, and E. Ruckenstein, "Efficient surface grafting of luminescent silicon," Langmuir, Vol. 21, No. 13, 6054-6062, 2005.

112. Zhong, Y., F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.-T. Lee, and Y. He, "Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes," Journal of the American Chemical Society, 2013.

113. Tilley, R. D. and K. Yamamoto, "The microemulsion synthesis of hydrophobic and hydrophilic silicon nanocrystals," Adv. Mater., Vol. 18, No. 15, 2053-2056, 2006.

114. Yang, C.-S., R. A. Bley, S. M. Kauzlarich, H. W. H. Lee, and G. R. Delgado, "Synthesis of alkyl-terminated silicon nanoclusters by a solution route," Journal of the American Chemical Society, Vol. 121, No. 22, 5191-5195, 1999.

115. Bley, R. A. and S. M. Kauzlarich, "A low-temperature solution phase route for the synthesis of silicon nanoclusters," Journal of the American Chemical Society, Vol. 118, No. 49, 12461-12462, 1996.

116. Mayeri, D., B. L. Phillips, M. P. Augustine, and S. M. Kauzlarich, "NMR study of the synthesis of alkyl-terminated silicon nanoparticles from the reaction of SiCl4 with the Zintl salt, NaSi," Chem. Mater., Vol. 13, No. 3, 765-770, 2001.

117. Prabakar, S., A. Shiohara, S. Hanada, K. Fujioka, K. Yamamoto, and R. D. Tilley, "Size controlled synthesis of germanium nanocrystals by hydride reducing agents and their biological applications," Chem. Mater., Vol. 22, No. 2, 482-486, 2010.

118. Shiohara, A., S. Prabakar, A. Faramus, C. Y. Hsu, P. S. Lai, P. T. Northcote, and R. D. Tilley, "Sized controlled synthesis, purification, and cell studies with silicon quantum dots," Nanoscale, Vol. 3, No. 8, 3364-3370, 2011.

119. Cheng, X., S. B. Lowe, S. Ciampi, A. Magenau, K. Gaus, P. J. Reece, and J. J. Gooding, "Versatile ‘click chemistry’ approach to functionalizing silicon quantum dots: Applications toward fluorescent cellular imaging," Langmuir, Vol. 30, No. 18, 5209-5216, 2014.

120. Cheng, X., E. Hinde, D.M. Owen, S. B. Lowe, P. J. Reece, K. Gaus, and J. J. Gooding, "Enhancing quantum dots for bioimaging using advanced surface chemistry and advanced optical microscopy: Application to silicon quantum dots (SiQDs)," Adv. Mater., Vol. 27, No. 40, 6144-6150, 2015.

121. Dasog, M., Z. Yang, S. Regli, T. M. Atkins, A. Faramus, M. P. Singh, E. Muthuswamy, S. M. Kauzlarich, R. D. Tilley, and J. G. Veinot, "Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals," ACS Nano, Vol. 7, No. 3, 2676-2685, 2013.

122. Li, Q., Y. He, J. Chang, L. Wang, H. Chen, Y. W. Tan, H. Wang, and Z. Shao, "Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature," J. Am. Chem. Soc., Vol. 135, No. 40, 14924-14927, 2013.

123. Wang, L., Q. Li, H.-Y. Wang, J.-C. Huang, R. Zhang, Q.-D. Chen, H.-L. Xu, W. Han, Z.- Z. Shao, and H.-B. Sun, "Ultrafast optical spectroscopy of surface-modified silicon quantum dots: Unraveling the underlying mechanism of the ultrabright and color-tunable photoluminescence," Light: Science & Applications, Vol. 4, No. 1, e245, 2015.

124. Li, Q., T.-Y. Luo, M. Zhou, H. Abroshan, J. Huang, H. J. Kim, N. L. Rosi, Z. Shao, and R. Jin, "Silicon nanoparticles with surface nitrogen: 90% quantum yield with narrow luminescence bandwidth and the ligand structure based energy law," ACS Nano, Vol. 10, No. 9, 8385-8393, 2016.

125. Mangolini, L., E. Thimsen, and U. Kortshagen, "High-yield synthesis of luminescent silicon quantum dots in a continuous flow non-thermal plasma reactor," Amorphous and Nanocrystalline Silicon Science and Technology-2005, Vol. 862, 307-312, R.W. Collins, P. C. Taylor, M. Kondo, R. Carius, R. Biswas, Eds., 2005.

126. Mangolini, L. and U. Kortshagen, "Plasma-assisted synthesis of silicon nanocrystal inks," Adv. Mater., Vol. 19, No. 18, 2513-+, 2007.

127. Zhou, S., Z. Ni, Y. Ding, M. Sugaya, X. Pi, and T. Nozaki, "Ligand-free, colloidal, and plasmonic silicon nanocrystals heavily doped with boron," ACS Photonics, Vol. 3, No. 3, 415-422, 2016.

128. Ni, Z., L. Ma, S. Du, Y. Xu, M. Yuan, H. Fang, Z.Wang, M. Xu, D. Li, J. Yang, W. Hu, X. Pi, and D. Yang, "Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors," ACS Nano, Vol. 11, No. 10, 9854-9862, 2017.

129. Yu, T., F. Wang, Y. Xu, L. Ma, X. Pi, and D. Yang, "Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based schottky-junction photodetectors," Advanced Materials, Vol. 28, No. 24, 4912-4919, 2016.

130. Rowe, D. J., J. S. Jeong, K. A. Mkhoyan, and U. R. Kortshagen, "Phosphorus-doped silicon nanocrystals exhibiting mid-infrared localized surface plasmon resonance," Nano Letters, Vol. 13, No. 3, 1317-1322, 2013.

131. Howes, P. D., R. Chandrawati, and M. M. Stevens, "Colloidal nanoparticles as advanced biological sensors," Science, Vol. 346, No. 6205, 2014.

132. Ma, Y., Y. Yamamoto, P. R. Nicovich, J. Goyette, J. Rossy, J. J. Gooding, and K. Gaus, "A FRET sensor enables quantitative measurements of membrane charges in live cells," Nat. Biotech., Vol. 35, No. 4, 363-370, 2017.

133. Zhang, C. Y., H. C. Yeh, M. T. Kuroki, and T. H. Wang, "Single-quantum-dot-based DNA nanosensor," Nat. Mater., Vol. 4, No. 11, 826-831, 2005.

134. Medintz, I. L., A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, and J. M. Mauro, "Self-assembled nanoscale biosensors based on quantum dot FRET donors," Nat. Mater., Vol. 2, No. 9, 630-638, 2003.

135. Ban, R., F. Zheng, and J. Zhang, "A highly sensitive fluorescence assay for 2,4,6-trinitrotoluene using amine-capped silicon quantum dots as a probe," Analytical Methods, Vol. 7, No. 5, 1732-1737, 2015.

136. Zhang, X., X. Chen, S. Kai, H.-Y. Wang, J. Yang, F.-G. Wu, and Z. Chen, "Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles," Analytical Chemistry, Vol. 87, No. 6, 3360-3365, 2015.

137. Zhang, J. and S.-H. Yu, "Highly photoluminescent silicon nanocrystals for rapid, label-free and recyclable detection of mercuric ions," Nanoscale, Vol. 6, No. 8, 4096-4101, 2014.

138. Cheng, X., B. F. P. McVey, A. B. Robinson, G. Longatte, P. B. O’Mara, V. T. G. Tan, P. Thordarson, R. D. Tilley, K. Gaus, and J. Justin Gooding, "Protease sensing using nontoxic silicon quantum dots," BIOMEDO, Vol. 22, No. 8, 2017.

139. Ruizendaal, L., S. P. Pujari, V. Gevaerts, J. M. Paulusse, and H. Zuilhof, "Biofunctional silicon nanoparticles by means of thiol-ene click chemistry," Chem. Asian J., Vol. 6, No. 10, 2776-2786, 2011.

140. Cheng, X., B. F. P. McVey, A. B. Robinson, L. Guillaume, P. B. O’Mara, V. T. G. Tan, T. Pall, R. D. Tilley, G. Katharina, and G. John Justin, "Protease sensing using nontoxic silicon quantum dots," Journal of Biomedical Optics, Vol. 22, No. 8, 1, 2017.

141. Medintz, I. L., H. T. Uyeda, E. R. Goldman, and H. Mattoussi, "Quantum dot bioconjugates for imaging, labelling and sensing," Nat. Mater., Vol. 4, No. 6, 435-446, 2005.

142. Diaz, S. A., A. P. Malonoski, K. Susumu, R. V. Hofele, E. Oh, and I. L. Medintz, "Probing the kinetics of quantum dot-based proteolytic sensors," Anal. Bioanal. Chem., Vol. 407, No. 24, 7307-7318, 2015.

143. Ji, X., F. Peng, Y. Zhong, Y. Su, X. Jiang, C. Song, L. Yang, B. Chu, S.-T. Lee, and Y. He, "Highly fluorescent, photostable, and ultrasmall silicon drug nanocarriers for long-term tumor cell tracking and in-vivo cancer therapy," Advanced Materials, Vol. 27, No. 6, 1029-1034, 2015.

144. Song, C., Y. Zhong, X. Jiang, F. Peng, Y. Lu, X. Ji, Y. Su, and Y. He, "Peptide-conjugated fluorescent silicon nanoparticles enabling simultaneous tracking and specific destruction of cancer cells," Anal. Chem., Vol. 87, No. 13, 6718-6723, 2015.

145. Jiang, A., B. Song, X. Ji, F. Peng, H. Wang, Y. Su, and Y. He, "Doxorubicin-loaded silicon nanoparticles impregnated into red blood cells featuring bright fluorescence, strong photostability, and lengthened blood residency," Nano Res., 2017.

146. Ji, X., F. Peng, Y. Zhong, Y. Su, X. Jiang, C. Song, L. Yang, B. Chu, S. T. Lee, and Y. He, "Highly fluorescent, photostable, and ultrasmall silicon drug nanocarriers for long-term tumor cell tracking and in-vivo cancer therapy," Adv. Mater., Vol. 27, No. 6, 1029-1034, 2015.

147. Hinde, E., K. Thammasiraphop, H. T. T. Duong, J. Yeow, B. Karagoz, C. Boyer, J. J. Gooding, and K. Gaus, "Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release," Nature Nanotechnology, Vol. 12, 81, 2016.