Vol. 66
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-03-22
Design of Compact Wideband Serpentine Patch Antenna for Ingestible Endoscopic Applications
By
Progress In Electromagnetics Research M, Vol. 66, 53-63, 2018
Abstract
A miniaturized serpentine patch antenna is presented for Industrial, Scientific and Medical band (2.4-2.48GHz) applications. The proposed antenna is fabricated on a Rogers RT/duroid5880 substrate having permittivity of 2.2 and loss tangent of 0.0009. In comparison with other traditional structures, this antenna has an electrical length of 0.961λ with 29.2% impedance bandwidth which is advantageous for higher data rate transmission. In order to test the performance, the proposed antenna is tested in a silicone feeding tube. The simulated and measured results show good agreement with each other. Defected ground structure is also incorporated to enhance the performance of the proposed structure. All the simulations have been carried out on FDTD based Empire XCcel tool.
Citation
Shikha Sukhija, Rakesh Kumar Sarin, and Nitesh Kashyap, "Design of Compact Wideband Serpentine Patch Antenna for Ingestible Endoscopic Applications," Progress In Electromagnetics Research M, Vol. 66, 53-63, 2018.
doi:10.2528/PIERM17120101
References

1. Furse, C. M., "Design of an antenna for pacemaker communication," Microwaves RF, Vol. 39, No. 3, 73-76, Mar. 2000.

2. Beach, R. D., F. V. Kuster, and F. Moussy, "Subminiature implantable potentiostat and modified commercial telemetry device for remote glucose monitoring," IEEE Trans. Instr. Meas., Vol. 48, No. 6, 1239-1245, Dec. 1999.
doi:10.1109/19.816143

3. Beach, R. D., R. W. Conlan, M. C. Godwin, and F. Moussy, "Towards a miniature implantable in vivo telemetry monitoring system dynamically configurable as a potentiostat or galvanostat for two- and three electrode biosensors," IEEE Trans. Instr. Meas., Vol. 54, No. 1, 61-72, Feb. 2005.
doi:10.1109/TIM.2004.839757

4. Hall, P. S. and Y. Hao, Antennas and Propagation for Body-Centric Wireless Communications, Artech House, 2006.

5. Kiourti, A. and K. S. Nikita, "A review of implantable patch antennas for biomedical telemetry: challenges and solutions," IEEE Antennas and Propag. Magazine, Vol. 54, No. 3, 210-228, Jun. 2012.
doi:10.1109/MAP.2012.6293992

6. Sukhija, S. and R. K. Sarin, "Low-profile patch antennas for biomedical and wireless applications," J. Comput. Electron., Vol. 16, No. 2, 354-368, Jun. 2017.
doi:10.1007/s10825-017-0957-z

7. Sukhija, S. and R. K. Sarin, "Design and performance of two-sleeve low profile antenna for bio-medical applications," Journal of Electrical Systems and Information Technology, Vol. 4, No. 1, 49-61, 2017.
doi:10.1016/j.jesit.2016.10.013

8. Sukhija, S. and R. K. Sarin, "A U-shaped meandered slot antenna for biomedical applications," Progress In Electromagnetics Research M, Vol. 62, 65-77, 2017.
doi:10.2528/PIERM17082101

9. "Triple-band metamaterial-inspired antenna using FDTD technique for WLAN/WiMAX applications," Int. Journal of RF and Computer Aided Engineering, Vol. 25, No. 8, 688-695, 2015.

10. Kandwal, A., R. Sharma, and S. K. Khah, "Bandwidth enhancement using Z-shaped defected ground structure for a microstrip antenna," Microwave and Optical Technology Letters, Vol. 55, 2251-2254, 2013.
doi:10.1002/mop.27836

11. Islam, M. M., et al. "Compact metamaterial antenna for UWB applications," Electronics Letters, Vol. 51, No. 18, 1222-1224, 2015.
doi:10.1049/el.2015.2131

12. Sharma, S. K., et al. "Epsilon negative CPW-fed zeroth-order resonating antenna with backed ground plane for extended bandwidth and miniaturization," IEEE Trans. on Antennas and Propag., Vol. 63, No. 11, 5197-5203, 2015.
doi:10.1109/TAP.2015.2477521

13. Xiong, H., J.-S. Hong, and Y.-H. Peng, "Impedance bandwidth and gain improvement for microstrip antenna using metamaterials," Radio Engineering, Vol. 21, No. 4, 993-998, Dec. 2012.

14. Barbagallo, S., A. Monorchio, and G. Manara, "Small periodicity FSS screens with enhanced bandwidth performance," Electronics Letters, Vol. 42, No. 7, 7-8, Mar. 2006.
doi:10.1049/el:20060329

15., Vol. 64, No. 240 Medical implant Communication Service (MICS) federal register, Rules reg., Dec. 1999.

16. Smith, E. K., "Radiowave Propagation in ITU-R," IEEE Magazine in Antennas and Propagation, Vol. 41, No. 1, 118-119, Feb. 1999.
doi:10.1109/MAP.1999.755034

17. ASGE Technology Committee, R. S. Kwon, S. Banerjee, D. Desilets, et al. "American Society for Gastrointestinal Endoscopy, Technology status evaluation report: enteral nutrition access devices," Gastrointest Endosc, Vol. 72, 236-48, 2010.

18. VD6725, STMicroelectronics, Geneva, Switzerland, Jan. 2012.

19. Small Battery Company, Hearing aid batteries, [Online], 2012, Available: http://www.smallbattery.company.org.uk/hearing_aid_batteries.htm.

20. "User and reference manual for the 3D EM time domain simulator empire XCcel,", ver.5, IMST GmbH, [Online], 2012, Available: http://www.empire.de/.

21. Lucy, Watts MBE "HANs week, tube feeding, TPN and awareness,", 2014, Available: http://www.lucy-watts.co.uk/2014/08/hans-week-tube-feeding-tpn-and-awareness.html.

22. Shukla, B. K., N. Kashyap, and R. K. Baghel, "Circular slotted elliptical patch antenna with elliptical notch in ground," Progress In Electromagnetics Research C, Vol. 74, 181-189, 2017.
doi:10.2528/PIERC17032705