1. Burger, W. and M. Burge, Principles of Digital Image Processing: Fundamental Techniques, Springer, 2009.
2. Yang, M. and G. Zhang, "Unsupervised target detection in sar images using scattering center model and mean shift clustering algorithm," Progress In Electromagnetics Research Letters, Vol. 35, 11-18, 2012.
doi:10.2528/PIERL12071109
3. Yang, M. and G. Zhang, "A dictionary-based image fusion for integration of SAR and optical images," Progress In Electromagnetics Research Letters, Vol. 49, 87-90, 2014.
doi:10.2528/PIERL14081801
4. Diao, W., X. Mao, and V. Gui, "Metrics for performance evaluation of preprocessing algorithms in infrared small target images," Progress In Electromagnetics Research, Vol. 115, 35-53, 2011.
doi:10.2528/PIER11012412
5. Zhao, B., S. Xiao, H. Lu, and J. Liu, "Point target detection in space-based infrared imaging system based on multi-direction filtering fusion," Progress In Electromagnetics Research M, Vol. 56, 145-156, 2017.
doi:10.2528/PIERM17030401
6. Lipton, A. J., H. Fujiyoshi, and R. S. Patil, "Moving target classification and tracking from real-time video," Proceedings of Proc. IEEE Workshop Applications of Computer Vision, 8-14, Princeton, NJ, USA, 1998.
7. Caspi, Y. and M. Irani, "Spatio-temporal alignment of sequences," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 24, No. 11, 1409-1424, 2002.
doi:10.1109/TPAMI.2002.1046148
8. Barron, J. L., D. J. Fleet, and S. S. Beauchemin, "Performance of optical flow techniques," International Journal of Computer Vision, Vol. 12, No. 1, 43-77, 1994.
doi:10.1007/BF01420984
9. Barranco, F., J. Diaz, E. Ros, and B. D. Pino, "Visual system based on artificial retina for motion detection," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 39, No. 3, 752-762, 2009.
doi:10.1109/TSMCB.2008.2009067
10. Horn, B. K. P. and B. G. Schunck, "Determining optical flow," Artificial intelligence, Vol. 17, No. 1-3, 185-203, 1981.
doi:10.1016/0004-3702(81)90024-2
11. Lucas, B. D. and T. Kanade, "An iterative image registration technique with an application to stereo vision," Proceedings of International Joint Conference on Artificial Intelligence, 674-679, Vancouver, British Columbia, Canada, 1981.
12. Hu, W., T. Tan, L. Wang, and S. Maybank, "A survey on visual surveillance of object motion and behaviors," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), Vol. 34, No. 3, 334-352, 2004.
doi:10.1109/TSMCC.2004.829274
13. Mhatre, S., S. Varma, and R. Nikhare, "Visual surveillance using absolute difference motion detection," Proceedings of IEEE International Conference on Technologies for Sustainable Development, 1-5, Mumbai, India, 2015.
14. Diao, W., X. Mao, H. Zheng, Y. Xue, and V. Gui, "Image sequence measures for automatic target tracking," Progress In Electromagnetics Research, Vol. 130, 447-472, 2012.
doi:10.2528/PIER12050810
15. Li, C. and Y. Jiang, "An effective background reconstruction method for video objects detection," Proceedings of IEEE International Conference on Networking and Distributed Computing, 161-165, Hangzhou, China, 2012.
16. Jiang, S., Z. Wei, S. Wang, Z. Zhou, and J. Zhang, "A new algorithm for background extraction under video surveillance," Proceedings of IEEE Conference Anthology, 1-4, China, 2013.
17. Hou, Z. and C. Han, "A background reconstruction algorithm based on pixel intensity classification," Journal of Software, Vol. 16, No. 9, 1568-1576, 2005.
doi:10.1360/jos161568
18. Zivkovic, Z. and F. V. D. Heijden, "Efficient adaptive density estimation per image pixel for the task of background subtraction," Pattern Recognition Letters, Vol. 27, No. 7, 773-780, 2006.
doi:10.1016/j.patrec.2005.11.005
19. Kim, K., T. H. Chalidabhongse, D. Harwood, and L. Davis, "Real-time foreground-background segmentation using codebook model," Real-Time Imaging, Vol. 11, No. 3, 172-185, 2005.
doi:10.1016/j.rti.2004.12.004
20. Barnich, O. and M. Van Droogenbroeck, "ViBe: A universal background subtraction algorithm for video sequences," IEEE Transactions on Image Processing, Vol. 20, No. 6, 1709-1724, 2011.
doi:10.1109/TIP.2010.2101613
21. Aubert, G. and P. Kornprobst, Mathematical Problems in Image Processing, Partial Differential Equations and the Calculus of Cariations, Springer, 2006.
22. Kornprobst, P., R. Deriche, and G. Aubert, "Image sequence analysis via partial differential equations," Journal of Mathematical Imaging and Vision, Vol. 11, No. 1, 5-26, 1999.
doi:10.1023/A:1008318126505
23. Francois, A. and G. Medioni, "Adaptive color background modeling for real-time segmentation of video streams," Proceedings of International Conference on Imaging Science, System and Technology, 1-6, 1999.
24. Cremers, D. and S. Soatto, "Variational space-time motion segmentation," Proceedings of IEEE International Conference on Computer Vision, 886-893, Nice, France, 2003.
doi:10.1109/ICCV.2003.1238442
25. Cremers, D. and S. Soatto, "Motion competition: A variational approach to piecewise parametric motion segmentation," International Journal of Computer Vision, Vol. 62, No. 3, 249-265, 2005.
doi:10.1007/s11263-005-4882-4
26. Aubert, G. and J. Aujol, "A variational approach to removing multiplicative noise," Siam Journal on Applied Mathematics, Vol. 68, No. 4, 925-946, 2008.
doi:10.1137/060671814
27. Bar, L., B. Berkels, M. Rumpf, and G. Sapiro, "A variational framework for simultaneous motion estimation and restoration of motion-blurred video," Proceedings of IEEE International Conference on Computer Vision, 1-8, Rio de Janeiro, Brazil, 2007.
28. Tikhonov, A. N. and V.Y. Arsenin, Solutions of Ill-posed Problems, Winston and Sons, 1977.
29. Rudin, L., S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Physica D, Vol. 60, No. 1-4, 259-268, 1992.
doi:10.1016/0167-2789(92)90242-F
30. Reza, H., B. Ngu, and B. Tuong, "Visual tracking in background subtracted image sequences via multi-bernoulli filtering," IEEE Transactions on Signal Processing, Vol. 61, No. 2, 392-397, 2012.