Vol. 73
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-02-12
A Dual Band Orthomode Transducer in k /Ka Bands for Satellite Communications Applications
By
Progress In Electromagnetics Research Letters, Vol. 73, 77-82, 2018
Abstract
This article presents the design, simulation and machining of a dual Orthomode Transducer for feeding antenna using waveguide technology. Linear orthogonal polarizations in common port are separated to single linear polarizations in other ports. This device is developed to work in K and Ka bands and could be exploited in satellite communications applications. Also, it is designed to provide good scattering parameters results experienced with simulation tools and real load laboratory measurement. The designed circuit exhibits important results with return losses less than 25 dB, insertion losses in theory of about 0.05 dB as well as a good isolation of 40 dB in both frequency bands of interest (19.4 GHz-21.8 GHz) and (27 GHz-32 GHz).
Citation
Abdellah El Kamili, Abdelwahed Tribak, Jaouad Terhzaz, and Angel Mediavilla Sanchez, "A Dual Band Orthomode Transducer in k /Ka Bands for Satellite Communications Applications," Progress In Electromagnetics Research Letters, Vol. 73, 77-82, 2018.
doi:10.2528/PIERL17112202
References

1. Amyotte, E., Y. Demers, L. Hildebrand, M. Forest, S. Riendeau, S. Sierra-Garcia, and J. Uher, "Recent developments in Ka-band satellite antennas for broadband communications," AIAA International Communications Satellite Systems Conference, 2010.
doi:10.2514/6.2010-8719

2. Narayanan, G., N. R. Erickson, and R. M. Grosslein, "Low cost direct machining of terahertz waveguide structures," Tenth International Symposium on Space Terahertz Technology, 518-528, Mar. 1999.

3. Walker, C. K., G. Narayanan, A. Hungerford, T. Bloomstein, S. Palmacci, M. Stern, and J. Curtin, "Laser micromachining of silicon: A new technique for fabricating terahertz imaging arrays," Astronomical Telescopes and Instrumentation, SPIE Symposium, Kona, Hawaii, 1998.

4. Boifot, A. M., E. Lier, and T. Schaug-Pettersen, "Simple and broadband orthomode transducer," Proc. IEE, Vol. 137, No. 6, 396-400, 1990.

5. Boifot, A. M., "Classification of orthomode transducers," European Transactions on Telecommunication and Related Technologies, Vol. 2, No. 5, 503-510, 1991.
doi:10.1002/ett.4460020507

6. Tribak, A., J. Cano, A. Mediavilla, and M. Boussouis, "Octave bandwidth compact turnstile-based orthomode transducer," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 10, 539-541, 2010.
doi:10.1109/LMWC.2010.2060261

7. Tao, Y., Z. Shen, and G. Liu, "Dual-band ortho-mode transducer with irregularly shaped diaphragm," Progress In Electromagnetics Research Letters, Vol. 27, 1-8, 2011.
doi:10.2528/PIERL11080104

8. Rebollar, J. M., J. Esteban, and J. De Frutos, "A dual frequency OMT in the Ku band for TT&C applications," IEEE Antennas and Propagation Society International Symposium, 1998, Vol. 4, 2258-2261, 1998.

9. Peverini, O. A., R. Tascone, M. Baralis, G. Virone, D. Trinchero, and R. Orta, "Reduced-order optimized mode-matching CAD of microwave waveguide components," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 1, 311-318, Jan. 2004.
doi:10.1109/TMTT.2003.820893