Vol. 80
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2018-03-12
A Hermite-Interpolation Discretization and a Uniform Path Deformation for the Spatial Spectral Domain Integral Equation Method in Multilayered Media for TE Polarization
By
Progress In Electromagnetics Research B, Vol. 80, 37-57, 2018
Abstract
Two alternative approaches to the spatial spectral integral equation method are proposed. The first enhancement comprises a Hermite interpolation as the set of basis functions instead of the Gabor frame. The continuity, differentiability, equidistant spacing, and small support of these basis functions allows for an efficient and accurate numerical implementation. The second approach encompasses a method to transform between the spatial domain and the deformed path in the complexplane spectral domain. This method allows for more general path shapes, thereby removing the need to decompose the complex-plane spectral-domain path into distinct straight sections. Both enhancements are implemented for the case of TE polarization, and the results are validated against the finite element method and the rigorous coupled-wave analysis.
Citation
Roeland Johannes Dilz, and Martijn Constant van Beurden, "A Hermite-Interpolation Discretization and a Uniform Path Deformation for the Spatial Spectral Domain Integral Equation Method in Multilayered Media for TE Polarization," Progress In Electromagnetics Research B, Vol. 80, 37-57, 2018.
doi:10.2528/PIERB17112104
References

1. Dilz, R. J. and M. C. van Beurden, "An efficient complex spectral path formulation for simulating the 2D TE scattering problem in a layered medium using Gabor frames," Journal of Computational Physics, Vol. 345, 528-542, 2017.
doi:10.1016/j.jcp.2017.05.034

2. Dilz, R. J., M. G. G. M. van Kraaij, and M. C. van Beurden, "2D TM scattering problem for finite objects in a dielectric stratified medium employing Gabor frames in a domain integral equation," Journal of the Optical Society of America A, Vol. 34, No. 8, 1315-1321, 2017.
doi:10.1364/JOSAA.34.001315

3. Dilz, R. J., A spatial spectral domain integral equation solver for electromagnetic scattering in dielectric layered media, Ph.D. thesis, Chapter 8, Eindhoven University of Technology, 2017.

4. Dilz, R. J. and M. C. van Beurden, "Fast operations for a Gabor-frame based integral equation with equidistant sampling," IEEE Antennas and Wireless Propagation Letters, Vol. 12, No. 1, 82-85, 2018.
doi:10.1109/LAWP.2017.2775702

5. Zwamborn, P. and P. M. van den Berg, "The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 9, 1757-1766, Sep. 1992.
doi:10.1109/22.156602

6. Diebold, A. C., Handbook of Silicon Semiconductor Metrology, CRC Press, 2001.
doi:10.1201/9780203904541

7. Dilz, R. J. and M. C. van Beurden, "The Gabor frame as a discretization for the 2D transverseelectric scattering-problem domain integral equation," Progress In Electromagnetics Research B, Vol. 69, 117-136, 2016.
doi:10.2528/PIERB16061406

8. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

9. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, IEEE Press, 1973.

10. Kong, J. A., Theory of Electromagnetic Waves, John Wiley & Sons, Inc, 1975.

11. Wait, J. R., Electromagnetic Waves in Stratified Media, Pergamon Press, 1970.

12. Sommerfeld, A., "Uber der ausbreitung der wellen in der drahtlosen telegraphie," Annalen der Physik, Vol. 333, No. 4, 665-736, 1909.
doi:10.1002/andp.19093330402

13. Hochman, A. and Y. Leviatan, "A numerical methodology for efficient evaluation of 2D Sommerfield integral in the dielectric half-space problem," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 413-431, Feb. 2010.
doi:10.1109/TAP.2009.2037761

14. De Ruiter, H. M., "Limits on the propagation constants of planar optical waveguide modes," Applied Optics, Vol. 20, No. 5, 731-732, 1981.
doi:10.1364/AO.20.000731

15. Newman, E. H. and D. Forrai, "Scattering from a microstrip patch," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 3, 245-251, Mar. 1987.
doi:10.1109/TAP.1987.1144084

16. Larson, M. G. and F. Bengzon, The Finite Element Method: Theory, Implementation, and Applications, Springer, 2013.
doi:10.1007/978-3-642-33287-6

17. Burger, S., L. Zschiedrich, J. Pomplun, and F. Schmidt, "Finite-element based electromagnetic field simulations: Benchmark results for isolated structures," Proc. SPIE 8880 Photomask Technology, Vol. 8880, 2013.

18. Moharam, M. G. and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," Journal of the Optical Society of America, Vol. 73, No. 4, 811-818, 1981.
doi:10.1364/JOSA.71.000811

19. Botten, I. C., M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, "The dielectric lamellar diffraction grating," Optica Acta, Vol. 28, No. 3, 413-428, 1981.
doi:10.1080/713820571

20. Pisarenco, M., J. Maubach, I. Setija, and R. Mattheij, "Aperiodic Fourier modal method in contrast-field formulation for simulation of scattering from finite structures," Journal of the Optical Society of America A, Vol. 27, No. 11, 2423-2431, 2010.
doi:10.1364/JOSAA.27.002423

21. Berezin, I. S. and N. P. Zhidkov, Computing Methods, Pergamon Press, 1965.

22. Dilz, R. J. and M. C. van Beurden, "Computational aspects of a spatial spectral domain integralequation for scattering by objects of large longitudinal extent," 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA), Verona, Italy, Sep. 11–15, 2017.

23. Taillaert, D., F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, "Grating couplers for coupling between optical fibers and nanophotonic waveguides," Japanese Journal of Applied Physics, Vol. 45, No. 8a, 6071-6077, 2006.
doi:10.1143/JJAP.45.6071

24. Lawrence, G. N., K. E. Moore, and P. J. Cronkite, "Rotationally symmetric construction optics for a waveguide focusing grating," Appl. Opt., Vol. 29, No. 15, 2315-2319, May 1990.
doi:10.1364/AO.29.002315

25. Forouhar, S., R.-X. Lu, W. S. C. Chang, R. L. Davis, and S.-K. Yao, "Chirped grating lenses on nb2o5 transition waveguides," Appl. Opt., Vol. 22, No. 19, 3128-3132, Oct. 1983.
doi:10.1364/AO.22.003128