Vol. 65
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-03-01
A Comparative Study for Breast Cancer Detection by Neural Approach for Different Configurations of the Microwave Imaging System
By
Progress In Electromagnetics Research M, Vol. 65, 69-78, 2018
Abstract
The study done in this paper focuses on the detection of breast cancer by neuronal approach, by rotating the transmitting antenna from 15°, 30°, 45°, 60°, 75° to 90° relative to its initial position which is of 0° (i.e. to the opposite of the reciving antenna). We have generated our database by using a CST electromagnetic simulator for each antenna location. Then the learning and test phases of our artificial neural network (ANN) are done for seven antennae locations using two learning algorithms which are: the Scaled Conjugate Gradient Back-propagation (Trainscg) and the Gradient Descent with Momentum (Traingdm). A comparative study was conducted for all the seven cases. The results obtained are very satisfying and show that the best location of the transmitter antenna is at 60° and that the learning algorithm Trainscg gives better results than Traingdm.
Citation
Wassila Sekkal, Lotfi Merad, and Sidi Mohammed Meriah, "A Comparative Study for Breast Cancer Detection by Neural Approach for Different Configurations of the Microwave Imaging System," Progress In Electromagnetics Research M, Vol. 65, 69-78, 2018.
doi:10.2528/PIERM17111903
References

1. Conceicao, R. C., M. O’Halloran, M. Glavin, and E. Jones, "Numerical modelling for ultra wideband radar breast cancer detection and classification," Progress In Electromagnetics Research B, Vol. 34, 145-171, 2011.
doi:10.2528/PIERB11072705

2. Fear, E. C., S. C. Hagness, P. M. Meany, M. Okoniewski, and A. Stuchlym, "Enhancing breast tumor detection with near field imaging," IEEE Microwave Magazine, Vol. 3, 48-56, 2002.
doi:10.1109/6668.990683

3. Elmore, J. G., M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, "Ten year risk of false positive screening mammography and clinical breast examinations," New England Journal of Medicine, Vol. 338, 1089-1096, 1998.
doi:10.1056/NEJM199804163381601

4. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 3, March 2001.

5. Al Shehri, S. A. and S. Khatun, "UWB imaging for breast cancer detection using neural network," Progress In Electromagnetics Research C, Vol. 7, 79-93, 2009.
doi:10.2528/PIERC09031202

6. Fear, E. C. and M. A. Stuchly, "Microwave detection of breast cancer," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 1854-1863, 2000.

7. Chaudhary, S. S., R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies," Indian Journal of Biochemistry and Biophysics, Vol. 21, 76-79, 1981.

8. Alshehri, S. A., "Experimental breast tumor detection using NN-based UWB imaging," Progress In Electromagnetics Research, Vol. 111, 447-465, 2011.
doi:10.2528/PIER10110102

9. Alshehri, S. A., "3D experimental detection and discrimination of malignant and benign breast tumor using NN-based UWB imaging," Progress In Electromagnetics Research, Vol. 116, 221-237, 2011.
doi:10.2528/PIER11022601

10. O’Halloran, M., B. McGinley, R. C. Conceicao, F. Morgan, E. Jones, and M. Glavin, "Spiking neural networks for breast cancer classification in a dielectrically heterogeneous breast," Progress In Electromagnetics Research, Vol. 113, 413-428, 2011.
doi:10.2528/PIER10122203

11. Furundzicn, D., M. Djordjevic, and A. J. Bekic, "Neural networks approach to early breast cancer detection," Journal of Systems Architecture, Vol. 44, No. 617, 6339, 1998.

12. Bindu, G., A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802

13. Seladji, N., F. Z. Marouf, L. Merad, S. M. Meriah, F. T. Bendimerad, M. Bousahla, and N. Benahmed, "Antenne microruban miniature ultra large bande ULB pour imagerie microonde," Proceedings of the Congrès Méditerranéen des Télécommunications (CMT’12), 21-25, Fès, Morocco, March 22–24, 2012.

14. Miyakawa, M., T. Ishida, and M. Wantanabe, "Imaging capability of an early stage breast tumor by CP-MCT," Proceedings of the 26th Annual International Conference of the IEEE EMBS, Vol. 1, 1427-1430, San Francisco, CA, USA, 2004.

15. Miraoui, A., L. Merad, and S. M. Meriah, "Breast tumor classification using support vector machine and artificial neural networks," International Journal of Microwave and Optical Technology, Vol. 12, No. 2, March 2017.

16. Miraoui, A., L. Merad, and S. M. Meriah, "Microwave imaging for the detection and localization of breast cancer using artificial neural network," Journal of Theoretical and Applied Information Technology, Vol. 74, No. 3, April 30, 2015.