Vol. 73
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-02-23
Design of Broadband Transition Structure from Microstrip to Soltline with Band Notched Characteristic
By
Progress In Electromagnetics Research Letters, Vol. 73, 105-112, 2018
Abstract
In this paper, a broadband transition structure from microstrip line to slotline with band-notched characteristic is proposed. To match the 50 Ω microstrip line, 4 Chebyshev impedance transformations are used in the transition structure, and its bandwidth is widened. There is a fan-shaped radial line at the microstrip terminal. A U-shaped slot is etched on the microstrip line with stepped impedance matching to achieve band-notch characteristic. By changing the length of the slot, the band notch is realized at different frequencies. Simulation and optimization of the transition structure are made by using the high frequency simulation software HFSS in this paper to achieve the band-notch function at 3.37-3.84 GHz and 10.67-11.14 GHz. In the rest of the band, return loss S11 is less than -15 dB, and voltage standing wave ratio (VSWR) is less than 1.5.
Citation
Fa-Kun Sun, Wu-Sheng Ji, Xiao-Chun Ji, Pei-Pei Han, Ying-Yun Tong, and Zhi-Yue Zhang, "Design of Broadband Transition Structure from Microstrip to Soltline with Band Notched Characteristic," Progress In Electromagnetics Research Letters, Vol. 73, 105-112, 2018.
doi:10.2528/PIERL17111610
References

1. Tu, S., Y.-C. Jiao, and Y. Song, "A Vivaldi antenna with notched frequency characteristics," Chinese Journal of Radio Science, Vol. 25, No. 2, 382-388, 2010.

2. Wang, S.-J., H.-Z. Lin, Y.-X. Lai, et al. "Band-notched UWB bandpass filters with microstrip-toslotline cross-junction transitions," Chinese Journal of Electron Devices, Vol. 39, No. 6, 522-525, 2016.

3. Wu, J.-F. and J.-S. Li, "Compact ultra-wideband antenna with 3.5/5.5GHz dual band-notched characteristic," IEEE International Symposium on Microwave, 446-450, 2013.

4. Sharma, A. and M. M. Sharma, "An UWB antenna design with dual band notched characteristic using U-shaped slots," International Conference on Signal Processing and Communication (ICSC), 470-473, 2016.

5. Mewara, H. S., M. M. Sharma, R. Kumawat, et al. "Bandwidth enhancement of compact rectangular monopole UWB antenna using M-shaped strip with triple band notch characteristic," International Conference on Computer, Communications and Electronics (Comptelix), 265-270, 2017.

6. Liao, J.-J., W.-B. Zeng, X.-D. Wu, et al. "Design of planar antenna with a band-notched characteristic for UWB application," IEEE International Conference on Communication Problem- Solving (ICCP), 47-50, 2015.

7. Jung, J., H. Lee, and Y. Lim, "Compact band-notched ultra-wideband antenna with parasitic elements," Electronics Letters, Vol. 44, No. 19, 1104-1106, 2008.
doi:10.1049/el:20082265

8. Pan, C.-Y., J.-H. Duan, W.-L. Tu, et al. "Planar band-notched ultra-wideband monopole antenna using single open-circuited stub," Microwave Conference, 1962-1964, 2009.

9. Wang, N.-B., Y.-C. Jiao, L. Zhang, et al. "A Simple low-loss broadband 1–14 GHz microstrip-toslotline transition," Microwave Opt. Technol. Letters, Vol. 51, No. 9, 2236-2239, 2010.
doi:10.1002/mop.24518

10. Zhang, Y.-C., B.-Z. Wang, and J. Hong, "Lumped-element microstrip-to-slotline transition," Electronics Letters, Vol. 40, No. 22, 1419-1420, 2004.
doi:10.1049/el:20046553

11. Chaudhary, G., P. Kim, Y. Jeong, J. Lim, et al. "Analysis and circuit modeling method for defected microstrip structure in planar transmission lines," Microwave Conference, 999-1002, 2012.