Vol. 64
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-02-21
Unidirectional UWB Magneto-Electric Antenna for Medical Telemetry
By
Progress In Electromagnetics Research M, Vol. 64, 211-217, 2018
Abstract
An implantable magneto-electric antenna (IMEA) aiming for operation at ultra-wideband (UWB: 3.1-10.6 GHz) frequency spectrum is presented for biotelemetry usages for the first time. The IMEA is composed of a horizontal planar bowtie radiator, from whose middle the antenna is excited, and a vertically inclined rectangular radiator. The two radiators are complementary and correspond to electric and magnetic dipoles, respectively. The radiators are built over a square dielectric material (εr = 6, σ =0.0005) with a cavity for embedding suitable accompanying circuitry system. The IMEA with its biocompatible insulator (PEEK: εr = 3.2, tan δ = 0.01) measures 1456 mm3 in volume. HFSS software was used to carry out numerical optimization of the IMEA with a simple multilayered model of body tissue (Skin, Fat and Muscle) as the host environment. The simulated result of the proposed IMEA shows over 90% impedance bandwidth (S11<-10 dB) and records a remarkable high gain of 2 dBi within 70% bandwidth. The radiation efficiency is around 50%, and a unidirectional radiation pattern with little back lobe is observed.
Citation
Johnbosco I. E. Anosike, Li-Ying Feng, Hong-Xing Zheng, Ying Liu, and Yue-Xin Liu, "Unidirectional UWB Magneto-Electric Antenna for Medical Telemetry," Progress In Electromagnetics Research M, Vol. 64, 211-217, 2018.
doi:10.2528/PIERM17110910
References

1. Sumin, Y., K. Kihyun, and N. Sangwook, "Outer-wall loop antenna for ultrawideband capsule endoscope system," Antennas Wirel. Propag. Lett. IEEE, Vol. 9, 1135-1138, 2010.
doi:10.1109/LAWP.2010.2094996

2. Challa, N. R. and S. Raghavan, "Design of multiband implantable loop antenna for in body applications," 2015 Conference on Power, Control, Communication and Computational Technologies for Sustainable Growth (PCCCTSG) Kurnool, 239-242, Andhra Pradesh, India, 2015.

3. Yazdandoost, K. Y., "UWB antenna for body implanted applications," 2012 42nd European Microwave Conference, 932-935, Amsterdam, 2012.
doi:10.23919/EuMC.2012.6459433

4. Abadia, J., F. Merli, J. F. Zurcher, J. R. Mosig, and A. K. Skrivervik, "3D-spiral small antenna design and realization for biomedical telemetry in the MICS band," Radioengineering, Vol. 18, No. 4, 359-367, Dec. 2009.

5. Gordillo, A. C. and I. Balasingham, "On directive antennas application to implant - on-body UWB communications," The 19th Annual Wireless and Optical Communications Conference (WOCC), 1-5, Shanghai, 2010.

6. Kumar, S. A. and T. Shanmuganantham, "Implantable CPW fed X-shaped monopole antenna for ISM band," 2013 National Conference on Communications (NCC), 2-5, New Delhi, India, 2013.

7. Luk, K. and H. Wong, "A new wideband unidirectional antenna element," Int. J. Microw. Opt. Technol., Vol. 1, No. 1, 35-44, 2006.

8. Ding, C. and K. Luk, "Low-profile magneto-electric dipole antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1642-1644, Jan. 2016.
doi:10.1109/LAWP.2016.2519942

9. Ge, L. and K. M. Luk, "A magneto-electric dipole for unidirectional UWB communications,", Vol. 61, No. 11, 5762-5765, Jul. 2013.
doi:10.1109/TAP.2013.2276924

10. IEEE Computer Society "IEEE Standard for Local and metropolitan area networks - Part 15.6: Wireless Body Area Networks,", 1-271, 2012.

11. Chávez-Santiago, R., C. García-Pardo, A. Fornes-Leal, A. Vallés-Lluch, I. Balasingham, and N. Cardona, "Ultra wideband propagation for future in-body sensor networks," 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), 2160-2163, 2014.
doi:10.1109/PIMRC.2014.7136530

12. Zengin, F., E. Akkaya, B. T¨uretken, and S. E. San, "Design and realization of ultra wide-band implant antenna for biotelemetry systems," 30th URSI General Assembly and Scientific Symposium, 5-8, URSIGASS, Istanbul, 2011.

13. Kiourti, A. and K. S. Nikita, "A review of implantable patch antennas for biomedical telemetry: Challenges and solutions," IEEE Antennas and Propagation Magazine, Vol. 54, No. 3, 210-228, Jun. 2012.
doi:10.1109/MAP.2012.6293992

14. Laird "Eccostock@HIK500F - High temperature, low loss, adjusted dielectric constant stock,", [Online], Available: www.lairdtech.com.

15. Italian National Research Council - Institute for Applied Physics "Dielectric properties of body tissues in the frequency range 10 Hz-100 GHz," Inrc, 2012, [Online], Available: http://niremf.ifac.cnr.it/tissprop/.

16. Magill, M. K., G. A. Conway, and W. G. Scanlon, "Robust implantable antenna for inbody communications," Proceedings of the 2015 Loughborough Antennas Propagation Conference (LAPC), 1-4, 2015.

17. Bakogianni, S. and S. Koulouridis, "Design of a novel miniature implantable rectenna for in-body medical devices power support," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-5, Davos, 2016.

18. Morabito, A. F., A. R. Lagana, and T. Isernia, "Isophoric array antennas with a low number of control points: a `size tapered' solution," Progress In Electromagnetics Research Letters, Vol. 36, 121-131, 2013.
doi:10.2528/PIERL12092705

19. Morabito, A. F., A. R. Laganà, G. Sorbello, and T. Isernia, "Mask-constrained power synthesis of maximally sparse linear arrays through a compressive-sensing-driven strategy," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 10, 1384-1396, 2015.
doi:10.1080/09205071.2015.1046561