Vol. 66
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-03-27
A Novel Method for Cogging Torque Reduction in Permanent Magnet Brushless DC Motor Using T-Shaped Bifurcation in Stator Teeth
By
Progress In Electromagnetics Research M, Vol. 66, 99-107, 2018
Abstract
A variety of techniques are available to reduce cogging torque in Permanent Magnet Brushless DC (PMBLDC) motors. In general, all the techniques are meant for effectively reducing the cogging torque. This paper presents a new technique for cogging torque reduction in a radial flux surface mounted PMBLDC motor by applying the proposed T-shaped bifurcation method in the stator teeth of a PMBLDC motor. The Finite Element Analysis (FEA) is carried out for the T-shaped bifurcation method applied to a PMBLDC motor, and analysis is done using Virtual Work (VW) method. The CAD software package MagNet has been used to completely analyze the T-shaped bifurcation based PMBLDC motor. FEA and CAD simulated results are compared for the reduction of cogging torque values. It is found that the cogging torque reductions in the two methods are nearly the same. The cogging torque and the flux density values of the motor calculated using the proposed T-shaped bifurcation method are compared with the corresponding values of the recently introduced Reduced Stator Slot Width method. The proposed T-shaped bifurcation is very effective compared to the existing techniques in reducing the cogging torque.
Citation
M. Arun Noyal Doss, R. Brindha, K. Mohanraj, Shubranshu Sekhar Dash, and K. M. Kavya, "A Novel Method for Cogging Torque Reduction in Permanent Magnet Brushless DC Motor Using T-Shaped Bifurcation in Stator Teeth," Progress In Electromagnetics Research M, Vol. 66, 99-107, 2018.
doi:10.2528/PIERM17110902
References

1. Islam, M. S., S. Mir, and T. Sebastian, "Issues in reducing the cogging torque of mass-produced permanent-magnet brushless DC motor," IEEE Trans. Ind. Applicat., Vol. 40, 813-820, May/Jun. 2004.
doi:10.1109/TIA.2004.827469

2. Arun Noyal Doss, M., S. Jeevananthan, S. S. Dash, and J. Hussain, "Critical evaluation of cogging torque in BLDC motor for various techniques," International Journal of Automation and Control, Vol. 7, No. 3, 135-146, Sep. 2013.
doi:10.1504/IJAAC.2013.057042

3. Shin, P. S., S. H. Woo, Y. Zhang, and C. S. Koh, "An application of Latin hypercube sampling strategy for cogging torque reduction of large-scale permanent magnet motor," IEEE Trans. Magn., Vol. 44, No. 11, 4421-4424, Nov. 2008.
doi:10.1109/TMAG.2008.2002479

4. Jiang, X., J. Xing, Y. Li, and Y. Lu, "Theoretical and simulation analysis of influences of stator tooth width on cogging torque of BLDC motors," IEEE Trans. Magn., Vol. 45, No. 10, 4601-4604, Nov. 2008.
doi:10.1109/TMAG.2009.2022639

5. Lin, D., S. L. Ho, and W. N. Fu, "Analytical prediction of cogging torque in surface-mounted permanent-magnet motors," IEEE Trans. Magn., Vol. 45, 3296-3302, Sept./Oct. 2009.

6. Saravanan, S., M. Arunnoyaldoss, S. Jeevananthan, and S. Vidyasagar, "Reduction of cogging torque by adapting semicircled permanent magnet," ICEES 2011, 2011.

7. Upadhyay, P. R. and K. R. Rajagopal, "FE analysis and CAD of radial-flux surface mounted permanent magnet brushless DC motors," IEEE Trans. Magn., Vol. 41, 3952-3954, Sept./Oct. 2005.
doi:10.1109/TMAG.2005.854978

8. Arun Noyal Doss, M., V. Ganapathy, V. Marthandan, and D. Mahesh, "Modeling and simulation of brushless DC motor for minimizing the cogging torque, harmonics and torque ripples," International Review on Modelling and Simulation, Vol. 6, No. 5, 1452-1457, PART-A, Oct. 2013.

9. Yang, Y., X. Wang, C. Zhu, and C. Huang, "Reducing cogging torque by adapting isodiametric permanent magnet," IEEE Proc.-Electro., 2009.

10. Arun Noyal Doss, M., Md. Rizwan, and S. Jeevananthan, "Reduction of cogging torque in PMBLDC motor with reduced stator tooth width and bifurcated surface area using finite element analysis," International Conference on Electrical Energy System at SSN, 106-110, 2011.

11. Fazil, M. and K. R. Rajagopal, "Nonlinear dynamic modeling of a single-phase permanent-magnetbrushless DC motor using 2-D static finite-element results," IEEE Trans. Magn., Vol. 47, No. 4, 781-786, Apr. 2011.
doi:10.1109/TMAG.2010.2103955

12. Wang, D., X. Wang, M.-K. Kim, and S.-Y. Jung, "Integrated optimization of two design techniques for cogging torquereduction combined with analytical method by a simple gradient descent method," IEEE Trans. Magn., Vol. 48, No. 8, 2265-2276, Aug. 2012.
doi:10.1109/TMAG.2012.2191416

13. Yang, Y., X. Wang, C. Zhu, and C. Huang, "Reducing cogging torque by adapting isodiametric permanent magnet," IEEE Proc.-Electro., 1028-1031, 2009.