Vol. 64
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-02-09
A P-Variable Higher-Order Finite Volume Time Domain Method for Electromagnetic Scattering
By
Progress In Electromagnetics Research M, Vol. 64, 147-156, 2018
Abstract
A higher-order accurate solution to electromagnetic scattering problems is obtained at reduced computational cost in a p-variable finite volume time domain method in a scattered field formulation. Spatial operators of lower order, including first-order accuracy, are employed locally in substantial parts of the computational domain during the solution process. The use of computationally cheaper and lower order spatial operators does not affect the overall higher-order accuracy of the solution. The order of the spatial operator at a candidate cell during numerical simulation can vary in space and time and is dynamically chosen based on an order of magnitude comparison of scattered and incident fields at the cell centre. Numerical results are presented for electromagnetic scattering from perfectly conducting two-dimensional scatterers subject to transverse magnetic and transverse electric illumination.
Citation
Avijit Chatterjee, and Subodh Joshi, "A P-Variable Higher-Order Finite Volume Time Domain Method for Electromagnetic Scattering," Progress In Electromagnetics Research M, Vol. 64, 147-156, 2018.
doi:10.2528/PIERM17110801
References

1. Brandt, A., "Multi-level adaptive solutions to boundary value problems," Math. Comp., Vol. 31, 333-390, 1977.
doi:10.1090/S0025-5718-1977-0431719-X

2. Brandt, A., "Guide to multigrid development," Multigrid Methods, W. Hackbusch, U. Trottenberg (Eds.), 220-312, Springer-Verlag, 1982.

3. Fidkowski, K. J., T. A. Oliver, J. Lu, and D. L. Darmofal, "p-multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier Stokes equations," J. Comp. Phys., Vol. 207, 92-113, 2005.
doi:10.1016/j.jcp.2005.01.005

4. Berger, M. J. and J. Oliger, "Adaptive mesh refinement for hyperbolic partial differential equations," J. Comp. Phys., Vol. 53, 484-512, 1984.
doi:10.1016/0021-9991(84)90073-1

5. Babuška, I., "The p- and hp-versions of the finite element method: The state of the art," Finite Elements: Theory and Applications, Springer, New York, 1988.

6. Chatterjee, A., "A Multilevel numerical approach with application in time-domain electromagnetics," Commn. Comp. Phys., Vol. 17, 703-720, 2015.
doi:10.4208/cicp.181113.271114a

7. Joshi, S. M. and A. Chatterjee, "Higher-order multilevel framework for ADER scheme in computational aeroacoustics," J. Comp. Phys., Vol. 338, 388-404, 2017.
doi:10.1016/j.jcp.2017.02.062

8. Shu, C. W. and S. Osher, "Efficient implementation of essentially non-oscillatory shock-capturing schemes," J. Comp. Phys., Vol. 77, 439-471, 1988.
doi:10.1016/0021-9991(88)90177-5

9. Shu, C. W. and S. Osher, "Efficient implementation of essentially non-oscillatory shock-capturing schemes II," J. Comp. Phys., Vol. 83, 32-78, 1989.
doi:10.1016/0021-9991(89)90222-2

10. LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002.
doi:10.1017/CBO9780511791253

11. Kundu, P. K., I. M. Cohen, and D. R. Dowling, Fluid Mechanics, 5th Ed., Academic Press, 2015.

12. Chatterjee, A. and R. S. Myong, "Efficient implementation of higher-order finite volume time domain method for electrically large scatterers," Progress In Electromagnetics Research B, Vol. 17, 233-254, 2009.
doi:10.2528/PIERB09073102

13. Chatterjee, A. and A. Shrimal, "Essentially nonoscillatory finite volume scheme for electromagnetic scattering by thin dielectric coatings," AIAA J., Vol. 42, 361-365, 2004.
doi:10.2514/1.553

14. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., John Wiley, 1989.

15. Taflove, A. and K. R. Umashankar, "Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section," Proc. of the IEEE, Vol. 77, 682-699, 1989.
doi:10.1109/5.32059

16. Deore, N. and A. Chatterjee, "A cell-vertex based multigrid solution of the time domain Maxwell’s equations," Progress In Electromagnetics Research B, Vol. 23, 181-197, 2010.
doi:10.2528/PIERB10062002

17. Ekaterinaris, J. A., "High-order accurate, low numerical diffusion methods for aerodynamics," Prog. in Aero. Sci., Vol. 41, 192-300, 2005.
doi:10.1016/j.paerosci.2005.03.003