Vol. 74
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-03-06
A Compact Tri-Band Bandpass Filter with Independently Controllable Harmonic Bandwidth by Using Two Grounded Vias
By
Progress In Electromagnetics Research Letters, Vol. 74, 1-8, 2018
Abstract
A new class of tri-band bandpass filter (BPF) is presented, and harmonic passband bandwidth can be independently controlled. In the implementation, three coupling paths are used to control the bandwidth of each passband. The first coupling path is two grounded vias which are utilized to realize coupling between two short-stub loaded resonators. And the first coupling path delivers signals at the first passband. Meanwhile, the second coupling path delivers signals at both the first and second passbands. And the third coupling path only delivers signals at the third passband. Using this method, both the frequency and bandwidth of each passband can be designed and tuned easily. In this filter design, the first harmonic passband can be adjusted separately and is independent of the fundamental passband. Two grounded vias improve flexibility and form a fundamental passband and harmonic passband independently controllable passband filter. For demonstration, a tri-band BPF with three passbands at 1.5 GHz, 2.5 GHz, and 3.5 GHz with insertion losses of 0.34, 0.76 and 1.08 dB is designed, fabricated and measured. So this proposed filter will be attractive in wireless communication systems.
Citation
Peng Wang, Xiang An, and Zhi-Qing Lv, "A Compact Tri-Band Bandpass Filter with Independently Controllable Harmonic Bandwidth by Using Two Grounded Vias," Progress In Electromagnetics Research Letters, Vol. 74, 1-8, 2018.
doi:10.2528/PIERL17110209
References

1. Chu, Q. X., X. H. Wu, and F. C. Chen, "Novel compact tri-band bandpass ¯lter with controllable bandwidths," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 12, 655-657, 2011.
doi:10.1109/LMWC.2011.2172593

2. Liang, J. G., C. Wang, and N. Y. Kim, "Compact and highly selective dual/tri-band BPFs using folded T-shaped stub-loaded resonators for WLAN and WiMAX applications," Microwave and Optical Technology Letters, Vol. 58, No. 2, 312-319, 2016.
doi:10.1002/mop.29557

3. Zhang, X. Y., C. H. Chan, Q. Xue, and B. J. Hu, "Dual-band bandpass ¯lter with controllable bandwidths using two coupling paths," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 11, 616-618, 2010.
doi:10.1109/LMWC.2010.2066553

4. Gao, L., X. Y. Zhang, and Q. Xue, "Compact tri-band bandpass ¯lter using novel eight-mode resonator for 5G WiFi application," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 10, 660-662, 2015.
doi:10.1109/LMWC.2015.2421298

5. Mo, Y., K. Song, and Y. Fan, "Miniaturized triple-band bandpass ¯lter using coupled lines and grounded stepped impedance resonators," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 5, 333-335, 2014.
doi:10.1109/LMWC.2014.2310458

6. Chen, F.-C., J.-M. Qiu, H.-T. Hu, and Q.-X. Chu, "Triband bandpass ¯lter using asymmetrically loaded resonators," Microwave and Optical Technology Letters, Vol. 56, No. 8, 1862-1865, 2014.
doi:10.1002/mop.28466

7. Chu, Q. X., F. C. Chen, Z. H. Tu, and H. Wang, "A novel crossed resonator and its applications to bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 7, 1753-1759, 2009.
doi:10.1109/TMTT.2009.2022873

8. Zhang, X. Y., Q. Xue, and B. J. Hu, "Planar tri-band bandpass filter with compact size," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 5, 262-264, 2010.
doi:10.1109/LMWC.2010.2045583

9. Chen, W.-Y., Y.-H. Su, H. Kuan, and S.-J. Chang, "Simple method to design a tri-band bandpass ¯lter using asymmetric SIRs for GSM, WIMAX, and WLAN applications," Microwave and Optical Technology Letters, Vol. 53, No. 7, 1573-1576, 2011.
doi:10.1002/mop.26037

10. Hsu, C. I. G., C. H. Lee, and Y. H. Hsieh, "Tri-band bandpass ¯lter with sharp passband skirts designed using tri-section SIRs," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 1, 19-21, 2008.
doi:10.1109/LMWC.2007.911976

11. Chen, W. Y., M. H. Weng, and S. J. Chang, "A new tri-band bandpass filter based on stub-loaded step-impedance resonator," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 4, 179-181, 2012.
doi:10.1109/LMWC.2012.2187884

12. Wei, F., P. Y. Qin, Y. J. Guo, and X. W. Shi, "Design of multi-band bandpass ¯lters based on stub loaded stepped-impedance resonator with defected microstrip structure," IET Microwaves, Antennas & Propagation, Vol. 10, No. 2, 230-236, 2016.
doi:10.1049/iet-map.2015.0495

13. Mondal, P. and M. K. Mandal, "Design of dual-band bandpass filters using stub-loaded open-loop resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 1, 150-155, 2008.
doi:10.1109/TMTT.2007.912204