1. Cheng, Y. Z., Y. Nie, Z. Z. Cheng, X. Wang, and R. Z. Gong, "Asymmetric chiral metamaterial circular polarizer based on twisted split-ring resonator," Appl. Phys. B, Vol. 116, No. 1, 129-134, 2014.
doi:10.1007/s00340-013-5659-z
2. Zebiri, C. and F. Benabdelaziz, "Asymptotic approach for rectangular microstrip patch antenna with magnetic anisotropy and chiral substrate," World Academy of Science, Engineering and Technology, Vol. 2, 316-322, 2008.
3. Guven, K., E. Saenz, R. Gonzalo, et al. "Electromagnetic cloaking with canonical spiral inclusions," New J. Phys., Vol. 10, No. 11, 2008.
doi:10.1088/1367-2630/10/11/115037
4. Li, M., L. Guo, J. Dong, and H. Yang, "An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves," Journal of Physics D: Applied Physics, Vol. 47, 2014.
5. Tretyakov, S. A. and A. A. Sochava, "Proposed composite material for nonreflecting shields and antenna radomes," Electronics Letters, Vol. 29, No. 12, 1048-1049, 1993.
doi:10.1049/el:19930699
6. Prosvirnin, S. L. and N. I. Zheludev, "Analysis of polarization transformations by a planar chiral array of complex-shaped particles," Journal of Optics A: Pure and Applied Optics, Vol. 11, 2009.
7. Varadan, V. K., A. Lkhtakia, and V. V. Varadan, "Propagation in a parallel-plate waveguide wholly filled with a chiral medium," Journal of Wave-material Interaction, Vol. 3, No. 3, 267-272, 1988.
8. Grande, A., I. Barba, A. C. L. Cabeceira, J. Represa, P. P. M. So, and W. J. R. Hoefer, "FDTD modeling of transient microwave signals in dispersive and lossy bi-isotropic media," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 3, 773-783, 2004.
doi:10.1109/TMTT.2004.823537
9. Akyurtlu, A., D. H. Werner, and K. Aydin, "Bi-FDTD: A new technique for modeling electromagnetic wave interaction with Bi-isotropic media," Microwave and Optical Technology Letters, Vol. 26, No. 4, 239-242, 2000.
doi:10.1002/1098-2760(20000820)26:4<239::AID-MOP11>3.0.CO;2-D
10. Akyurtlu, A., D. H. Werner, and K. Aydin, "A novel FDTD technique for modeling chiral media," IEEE Antennas Propagation Society Int. Symp., Vol. 3, 1332-1335, Salt Lake City, UT, 2000.
11. Akyurtlu, A. and D. H. Werner, "Modeling chiral media using a new dispersive FDTD technique," IEEE Antennas Propagation Society Int. Symp., Vol. 1, 44-47, Boston, MA, 2001.
12. Akyurtlu, A. and D. H. Werner, "Analysis of double negative media with magneto-electric coupling using a novel dispersive FDTD formulation," IEEE Int. Symp. Antennas Propagation USNC/URSI Nat. Radio Science Meeting, Vol. 3, 371-374, Columbus, 2003.
13. Akyurtlu, A. and D. H. Werner, "BI-FDTD: A novel finite-difference time-domain formulation for modeling wave propagation in bi-isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 416-425, 2004.
doi:10.1109/TAP.2004.823956
14. Akyurtlu, A. and D. H. Werner, "A Novel dispersive FDTD formulation for modeling transient propagation in chiral metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2267-2276, 2004.
doi:10.1109/TAP.2004.834153
15. Demir, V., A. Z. Elsherbeni, and E. Arvas, "FDTD formulation for dispersive chiral media using the z transform method," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 10, 3374-3384, 2005.
doi:10.1109/TAP.2005.856328
16. Attiya, A. M., "Shift-operator finite difference time domain analysis of chiral medium," Progress In Electromagnetics Research M, Vol. 13, 29-40, 2010.
doi:10.2528/PIERM10052403
17. Grande, A., I. Barba, A. C. L. Cabeceira, J. Represa, K. Karkkainen, and A. H. Sihvola, "Two-Dimensional Extension of a Novel FDTD technique for modeling dispersive lossy bi-isotropic media using the auxiliary differential equation method," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 5, 375-377, 2005.
doi:10.1109/LMWC.2005.847732
18. Wang, M. Y., H. F. Mu, W. Chen, L. Zhao, and J. Xu, "FDTD analysis of chiral metamaterials slab by using the auxiliary differential equation algorithm," Frequenz, Vol. 67, No. 5-6, 155-161, DE Gruyter, 2013.
19. Pereda, J. A., A. Grande, O. Gonzalez, and A. Vegas, "FDTD modeling of chiral media by using the mobius transformation technique," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 327-330, 2006.
doi:10.1109/LAWP.2006.878902
20. Paul, J., C. Christopoulos, and D. W. P. Thomas, "Time-domain modeling of electromagnetic wave propagation in complex materials," Electromagnetics, Vol. 19, No. 6, 527-546, 1999.
doi:10.1080/02726349908908672
21. Yaich, M. I., M. Khalladi, and M. Essaaidi, "Efficient modeling of chiral media using SCN-TLM method," Serbian Journal of Electrical Engineering, 249-254, 2004.
doi:10.2298/SJEE0402249Y
22. Cabeceira, C. L., A. Grande, I. Barba, and J. Represa, "A 2D-TLM model for electromagnetic wave propagation in chiral media," Antennas & Propagation Society International Symposium, Vol. 2, No. 5, 1487-1490, 2004.
23. Sihvola, A. H., "Electromagnetic modeling of bi-isotropic media," Progress In Electromagnetic Research, Vol. 9, 45-86, 1994.
24. Solymar, L., Electrical Properties of Materials, Oxford University Press Inc., 2010.
25. Christopoulos, C., "The Transmission-Line Modeling (TLM) method in electromagnetics," Synthesis Lectures on Computational Electromagnetics, Morgan & Claypool, 2006.
26. Jin, H. and R. Vahldieck, "Direct derivation of the TLM symmetrical condensed node and hybrid symmetrical condensed node from Maxwell’s equations using centered differencing and averaging," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 2554-2561, Dec. 1994.
27. Zhao, R., T. Koschny, and C. M. Soukoulis, "Chiral metamaterials: Retrieval of the effective parameters with and without substrate," Optics Express, Vol. 18, No. 14, 14553-14567, Jul. 2010.
doi:10.1364/OE.18.014553