Vol. 64
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-02-09
Modeling of Dispersive Chiral Media Using the ADE -TLM Method
By
Progress In Electromagnetics Research M, Vol. 64, 157-166, 2018
Abstract
In this paper, an efficient Transmission Line Matrix (TLM) algorithm for modeling chiral media is presented. The formulation is based on auxiliary differential equations (ADE) of electric and magnetic current densities. Permittivity and permeability are assumed to follow the Lorentz model while chirality is assumed to follow the Condon model. The proposed method models the dispersive nature of permittivity, permeability, and chirality by adding both voltage and current sources in supplementary stubs to the conventional symmetrical condensed node (SCN) of the TLM method. The electromagnetic coupling appears explicitly in the update equations of the voltage and current sources. The algorithm is developed to simulate electromagnetic wave propagation in a chiral medium. The co-polarized and cross-polarized transmitted and reflected waves from a chiral slab due to a normal incident plane wave are calculated. Validation is performed by comparing the results obtained from the proposed method with those obtained analytically.
Citation
Khalid Mounirh, Soufiane El Adraoui, Yasser Ekdiha, Mohamed Iben Yaich, and Mohsine Khalladi, "Modeling of Dispersive Chiral Media Using the ADE -TLM Method," Progress In Electromagnetics Research M, Vol. 64, 157-166, 2018.
doi:10.2528/PIERM17110103
References

1. Cheng, Y. Z., Y. Nie, Z. Z. Cheng, X. Wang, and R. Z. Gong, "Asymmetric chiral metamaterial circular polarizer based on twisted split-ring resonator," Appl. Phys. B, Vol. 116, No. 1, 129-134, 2014.
doi:10.1007/s00340-013-5659-z

2. Zebiri, C. and F. Benabdelaziz, "Asymptotic approach for rectangular microstrip patch antenna with magnetic anisotropy and chiral substrate," World Academy of Science, Engineering and Technology, Vol. 2, 316-322, 2008.

3. Guven, K., E. Saenz, R. Gonzalo, et al. "Electromagnetic cloaking with canonical spiral inclusions," New J. Phys., Vol. 10, No. 11, 2008.
doi:10.1088/1367-2630/10/11/115037

4. Li, M., L. Guo, J. Dong, and H. Yang, "An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves," Journal of Physics D: Applied Physics, Vol. 47, 2014.

5. Tretyakov, S. A. and A. A. Sochava, "Proposed composite material for nonreflecting shields and antenna radomes," Electronics Letters, Vol. 29, No. 12, 1048-1049, 1993.
doi:10.1049/el:19930699

6. Prosvirnin, S. L. and N. I. Zheludev, "Analysis of polarization transformations by a planar chiral array of complex-shaped particles," Journal of Optics A: Pure and Applied Optics, Vol. 11, 2009.

7. Varadan, V. K., A. Lkhtakia, and V. V. Varadan, "Propagation in a parallel-plate waveguide wholly filled with a chiral medium," Journal of Wave-material Interaction, Vol. 3, No. 3, 267-272, 1988.

8. Grande, A., I. Barba, A. C. L. Cabeceira, J. Represa, P. P. M. So, and W. J. R. Hoefer, "FDTD modeling of transient microwave signals in dispersive and lossy bi-isotropic media," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 3, 773-783, 2004.
doi:10.1109/TMTT.2004.823537

9. Akyurtlu, A., D. H. Werner, and K. Aydin, "Bi-FDTD: A new technique for modeling electromagnetic wave interaction with Bi-isotropic media," Microwave and Optical Technology Letters, Vol. 26, No. 4, 239-242, 2000.
doi:10.1002/1098-2760(20000820)26:4<239::AID-MOP11>3.0.CO;2-D

10. Akyurtlu, A., D. H. Werner, and K. Aydin, "A novel FDTD technique for modeling chiral media," IEEE Antennas Propagation Society Int. Symp., Vol. 3, 1332-1335, Salt Lake City, UT, 2000.

11. Akyurtlu, A. and D. H. Werner, "Modeling chiral media using a new dispersive FDTD technique," IEEE Antennas Propagation Society Int. Symp., Vol. 1, 44-47, Boston, MA, 2001.

12. Akyurtlu, A. and D. H. Werner, "Analysis of double negative media with magneto-electric coupling using a novel dispersive FDTD formulation," IEEE Int. Symp. Antennas Propagation USNC/URSI Nat. Radio Science Meeting, Vol. 3, 371-374, Columbus, 2003.

13. Akyurtlu, A. and D. H. Werner, "BI-FDTD: A novel finite-difference time-domain formulation for modeling wave propagation in bi-isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 416-425, 2004.
doi:10.1109/TAP.2004.823956

14. Akyurtlu, A. and D. H. Werner, "A Novel dispersive FDTD formulation for modeling transient propagation in chiral metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2267-2276, 2004.
doi:10.1109/TAP.2004.834153

15. Demir, V., A. Z. Elsherbeni, and E. Arvas, "FDTD formulation for dispersive chiral media using the z transform method," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 10, 3374-3384, 2005.
doi:10.1109/TAP.2005.856328

16. Attiya, A. M., "Shift-operator finite difference time domain analysis of chiral medium," Progress In Electromagnetics Research M, Vol. 13, 29-40, 2010.
doi:10.2528/PIERM10052403

17. Grande, A., I. Barba, A. C. L. Cabeceira, J. Represa, K. Karkkainen, and A. H. Sihvola, "Two-Dimensional Extension of a Novel FDTD technique for modeling dispersive lossy bi-isotropic media using the auxiliary differential equation method," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 5, 375-377, 2005.
doi:10.1109/LMWC.2005.847732

18. Wang, M. Y., H. F. Mu, W. Chen, L. Zhao, and J. Xu, "FDTD analysis of chiral metamaterials slab by using the auxiliary differential equation algorithm," Frequenz, Vol. 67, No. 5-6, 155-161, DE Gruyter, 2013.

19. Pereda, J. A., A. Grande, O. Gonzalez, and A. Vegas, "FDTD modeling of chiral media by using the mobius transformation technique," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 327-330, 2006.
doi:10.1109/LAWP.2006.878902

20. Paul, J., C. Christopoulos, and D. W. P. Thomas, "Time-domain modeling of electromagnetic wave propagation in complex materials," Electromagnetics, Vol. 19, No. 6, 527-546, 1999.
doi:10.1080/02726349908908672

21. Yaich, M. I., M. Khalladi, and M. Essaaidi, "Efficient modeling of chiral media using SCN-TLM method," Serbian Journal of Electrical Engineering, 249-254, 2004.
doi:10.2298/SJEE0402249Y

22. Cabeceira, C. L., A. Grande, I. Barba, and J. Represa, "A 2D-TLM model for electromagnetic wave propagation in chiral media," Antennas & Propagation Society International Symposium, Vol. 2, No. 5, 1487-1490, 2004.

23. Sihvola, A. H., "Electromagnetic modeling of bi-isotropic media," Progress In Electromagnetic Research, Vol. 9, 45-86, 1994.

24. Solymar, L., Electrical Properties of Materials, Oxford University Press Inc., 2010.

25. Christopoulos, C., "The Transmission-Line Modeling (TLM) method in electromagnetics," Synthesis Lectures on Computational Electromagnetics, Morgan & Claypool, 2006.

26. Jin, H. and R. Vahldieck, "Direct derivation of the TLM symmetrical condensed node and hybrid symmetrical condensed node from Maxwell’s equations using centered differencing and averaging," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 2554-2561, Dec. 1994.

27. Zhao, R., T. Koschny, and C. M. Soukoulis, "Chiral metamaterials: Retrieval of the effective parameters with and without substrate," Optics Express, Vol. 18, No. 14, 14553-14567, Jul. 2010.
doi:10.1364/OE.18.014553