Vol. 64
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-01-27
Beamforming of Frequency Diverse Array Radar with Nonlinear Frequency Offset Based on Logistic Map
By
Progress In Electromagnetics Research M, Vol. 64, 55-63, 2018
Abstract
In this paper, a multi-carrier nonlinear frequency modulation system based on pseudo-random frequency offset is designed. The reduction of the main lobe 3\,dB width and the side-lobe peaks cannot be realized simultaneously in conventional beamforming schemes, especially when the number of array elements remains unchanged. The proposed system can reduce the main-lobe 3 dB width and suppressing the side-lobe peaks simultaneously. This is done by adjusting the number of sub-signals, frequency offset coefficient and the inter-element spacing. Then, through time slot processing, signal power is focused on different targets. Numerical simulation experiments are implemented to validate the theoretical analysis of the proposed methodology, and comparisons with other techniques are made.
Citation
Zhonghan Wang, Tong Mu, Yaoliang Song, and Zeeshan Ahmad, "Beamforming of Frequency Diverse Array Radar with Nonlinear Frequency Offset Based on Logistic Map," Progress In Electromagnetics Research M, Vol. 64, 55-63, 2018.
doi:10.2528/PIERM17103101
References

1. So, H. C., M. G. Amin, S. Blunt, et al. "Introduction to the special issue on time/frequency modulated array signal processing," IEEE Journal of Selected Topics in Signal Processing, Vol. 11, No. 2, 225-227, 2017.
doi:10.1109/JSTSP.2017.2652098

2. Ren, W., H. Chen, and W. Gao, "On the design of time-domain implementation structure for steerable spherical modal beamformers with arbitrary beampatterns," Applied Acoustics, Vol. 122, 146-151, 2017.
doi:10.1016/j.apacoust.2017.02.013

3. Antonik, P., M. C. Wicks, H. D. Griffiths, and C. J. Baker, "Frequency diverse array radars," Proc. IEEE Radar Conf., 215-217, Verona, Italy, Apr. 2006.

4. Antonik, P., M. C. Wicks, H. D. Griffiths, and C. J. Baker, "Range dependent beamforming using element level waveform diversity," Proc. Int. Waveform Diversity Des. Conf., 1-4, Las Vegas, NV, USA, Jan. 2006.

5. Khan, W., I. M. Qureshi, and S. Saeed, "Frequency diverse array radar with logarithmically increasing frequency offset," IEEE Antennas Wireless Propag. Lett., Vol. 14, 499-502, 2015.
doi:10.1109/LAWP.2014.2368977

6. Khan, W., I. M. Qureshi, A. Basit, and W. Khan, "Range bins based MIMO Frequency diverse array radar with logarithmic frequency offset," IEEE Antennas Wireless Propag. Lett., Vol. 15, 885-888, 2016.
doi:10.1109/LAWP.2015.2478964

7. Basit, A., I. Qureshi, W. Khan, et al. "Beam pattern synthesis for an FDA radar with hamming window based non-uniform frequency offset," IEEE Antennas & Wireless Propagation Letters, 2017.

8. Fang, D.-G., A.-M. Yao, and W. Wu, "Synthesis of 4-D beampatterns using 4-D arrays," Proc. IEEE APS/URSI, Fajardo, Puerto Rico, 703-704, Jun. 26–Jul. 1, 2016 (Special session invited paper).

9. Yao, A.-M., W. Wu, and D.-G. Fang, "Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern," IEEE Trans. Antennas Propag., Vol. 64, No. 10, 4434-4446, Oct. 2016.
doi:10.1109/TAP.2016.2594075

10. Rocca, P., L. Manica, L. Poli, and A. Massa, "Synthesis of compromise sum-difference arrays through time-modulation," IET Radar Sonar Navig., Vol. 3, No. 6, 630-637, 2009.
doi:10.1049/iet-rsn.2009.0058

11. Poli, L., Poli, P. Rocca, L. Manica, and A. Massa, "Handling sideband radiations in time-modulated arrays through particle swarm optimization," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1408-1411, Apr. 2010.
doi:10.1109/TAP.2010.2041165

12. Poli, L., P. Rocca, and A. Massa, "Sideband radiation reduction exploiting pattern multiplication in directive time-modulated linear arrays," IET Microw. Antennas Propag., Vol. 6, No. 2, 214-222, 2012.
doi:10.1049/iet-map.2011.0159

13. Rocca, P., Q. Zhu, E. T. Bekele, S. Yang, and A. Massa, "4D arrays as enabling technology for cognitive radio systems," IEEE Trans. Antennas Propag., Vol. 62, No. 3, 1102-1106, Mar. 2014.
doi:10.1109/TAP.2013.2288109

14. Maneiro-Catoira, R., J. C. Brégains, J. A. García-Naya, et al. "Enhanced time-modulated arrays for harmonic beamforming," IEEE Journal of Selected Topics in Signal Processing, Vol. 11, No. 2, 259-270, 2017.
doi:10.1109/JSTSP.2016.2627178

15. Wang, Y., W. Li, G. Huang, et al. "Time-invariant range-angle dependent beampattern synthesis for FDA radar targets tracking," IEEE Antennas & Wireless Propagation Letters, 2017.

16. Shao, H., J. Dai, J. Xiong, H. Chen, and W.-Q. Wang, "Dot-shaped rangeangle beampattern synthesis for frequency diverse array," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1703-1706, 2016.
doi:10.1109/LAWP.2016.2527818