Vol. 72
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2018-01-13
A Broadband High-Efficiency Rectifier Based on Two-Level Impedance Match Network
By
Progress In Electromagnetics Research Letters, Vol. 72, 91-97, 2018
Abstract
A broadband high-efficiency rectifier with shunt-diode circuit topological structure is presented in this paper. By utilizing the two-level impedance match network, the rectifier can achieve a high microwave-direct current (mw-dc) conversion efficiency within a broad range of operation bandwidth. A stepped microstrip line and a cross-shaped microstrip stub as two-level match network is designed to extend the operation bandwidth. A cross-shaped stub connected to the capacitances act as a dc-pass filter to block the fundamental frequency wave and the high order harmonics and further improve mw-dc efficiency within a broad bandwidth. Experimental results show that the peak conversion efficiency is 80.3% at the frequency of 1.9 GHz when the input power is 22 dBm. When the input power is 19.5 dBm, the bandwidth of efficiency higher than 70% is 40% (1.80 GHz-2.72 GHz). This rectifier has the characteristics of low profile and easy integration, which is suitable for RFIDs, WSNs, and other applications.
Citation
Ling-Feng Li, Xuexia Yang, and Er-Jia Liu, "A Broadband High-Efficiency Rectifier Based on Two-Level Impedance Match Network," Progress In Electromagnetics Research Letters, Vol. 72, 91-97, 2018.
doi:10.2528/PIERL17103002
References

1. Jiang, S. and S. V. Georgakopoulos, "Optimum wireless powering of sensors embedded in concrete," IEEE Transactions on Antennas & Propagation, Vol. 60, No. 2, 1106-1113, 2012.
doi:10.1109/TAP.2011.2173147

2. Cheng, H. W., T. C. Yu, and C. H. Luo, "Direct current driving impedance matching method for rectenna using medical implant communication service band for wireless battery charging," IET Microwaves Antennas & Propagation, Vol. 7, No. 4, 277-282, 2013.
doi:10.1049/iet-map.2012.0372

3. Ge, J. J. and L. Jin, "A modified rectenna for Ka band wireless power transmission," International Symposium on Computational Intelligence and Design, 185-188, 2015.

4. Lu, J. J., X. X. Yang, H. Mei, et al. "A four-band rectifier with adaptive power for electromagnetic energy harvesting," IEEE Microwave & Wireless Components Letters, Vol. 26, No. 10, 819-821, 2016.
doi:10.1109/LMWC.2016.2601294

5. Sun, H. and G. Wen, "A new rectenna with all-polarization-receiving capability for wireless power transmission," IEEE Antennas & Wireless Propagation Letters, Vol. 15, 814-817, 2016.
doi:10.1109/LAWP.2015.2476345

6. Huang, W., B. Zhang, X. Chen, K.-M. Huang, and C.-J. Liu, "Study on an S-band rectenna array for wireless microwave power transmission," Progress In Electromagnetics Research, Vol. 135, 747-758, 2013.
doi:10.2528/PIER12120314

7. Nie, M. J., X. X. Yang, G. N. Tan, et al. "A compact 2.45GHz broadband rectenna using grounded coplanar waveguide,”," IEEE Antennas & Wireless Propagation Letters, Vol. 14, 986-989, 2015.
doi:10.1109/LAWP.2015.2388789

8. Wang, D., M. D. Wei, and R. Negra, "Design of a broadband microwave rectifier from 40MHz to 4740 MHz using high impedance inductor," Microwave Conference, 1010-1012, 2015.

9. Nie, M. J., X. X. Yang, et al. "A broadband rectifying circuit with high efficiency for microwave power transmission," Progress In Electromagnetics Research Letters, Vol. 52, 135-139, 2015.
doi:10.2528/PIERL15012902

10. Sakaki, H. and K. Nishikawa, "Broadband rectifier design based on quality factor of input matching circuit," Microwave Conference, 1205-1207, 2015.

11. Wu, p., L. Zhang, C. Liu, et al. "A C-band microwave rectifier based on harmonic termination and with input filter removed," Wireless Power Transfer Conference, 2017.

12. Zhang, X. Y., Z. X. Du, and Q. Xue, "High-efficiency broadband rectifier with wide ranges of input power and output load based on branch-line coupler," IEEE Transactions on Circuits & Systems I Regular Papers, Vol. 64, No. 3, 731-739, 2017.
doi:10.1109/TCSI.2016.2614331