Vol. 64
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-02-08
Breast Tumor Detection System Based on a Compact UWB Antenna Design
By
Progress In Electromagnetics Research M, Vol. 64, 123-133, 2018
Abstract
This paper presents a novel breast model system based on a UWB antenna for locating a tumor cancer. The antenna with overall size of 35 mm×20 mm×1.6 mm is characterized with an ultra-wideband of 120% and frequency range of 3 GHz-12 GHz for the FCC band. The proposed antenna exhibits good impedance matching, high gain and omnidirectional radiation patterns. The measurment results are presented to illustrate the performances of the proposed antenna. This antenna has been implemented in a designed system model with dielectric properties of a human breast capable to detect strange objects. The size and localization coordinates of the tumor are studied in detail for better tumor detection. The coordinates of the corresponding maximum value of SAR are identified in order to accurately detect different locations of tumor inside the breast. The results show that the localization of the tumor can be detected with high precision which demonstrates the performance of the proposed antenna and the entire system. The proposed breast model system was developed using the commercial CST Microwave studio simulator.
Citation
Ibtisam Amdaouch, Otman Aghzout, Azzeddin Naghar, Ana Vazquez Alejos, and Francisco J. Falcone, "Breast Tumor Detection System Based on a Compact UWB Antenna Design," Progress In Electromagnetics Research M, Vol. 64, 123-133, 2018.
doi:10.2528/PIERM17102404
References

1. Adnan, S., R. A. Abd-Alhameed, M. Usman, C. H. See, J. M. Noras, and M. B. Child, "Simulation and experimental measurements for near field imaging," PIERS Proceedings, 433-437, Kuala Lumpur, Malaysia, March 27-30, 2012.

2. Santorelli, A. and M. Popovi, "SAR distribution in microwave breast screening: Results with TWTLTLA wideband antenna," IEEE Intelligent Sensors, Sensor Networks and Information Processing, 11-16, 2011.

3. Shahira Banu, M. A., S. Vanaja, and S. Poonguzhali, "UWB microwave detection of breast cancer using SAR," International IEEE Conference on Energy Efficient Technologies for Sustainability (ICEETS), 113-118, Nagercoil, Inde, Apr. 2013.

4. Lazebnik, M., D. Popovic, L. McCartney, et al. "A large-scale study of the ultra-wideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, No. 20, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002

5. Tiang, S. S., M. S. Hathal, N. S. Nik Anwar, M. F. Ain, and M. Z. Abdullah, "Development of a compact wide-slot antenna for early stage breast cancer detection featuring circular array," International Journal of Antennas and Propagation, Vol. 2014, Article ID 309321, 11 pages, 2014.

6. Ojaroudi, N., M. Ojaroudi, and Y. Ebazadeh, "UWB/Omni-directional microstrip monopole antenna for microwave imaging applications," Progress In Electromagnetics Research C, Vol. 47, 139-146, 2014.
doi:10.2528/PIERC14010804

7. Akrou, L., O. Aghzout, H. Silva, and M. Essaaidi, "Design of compact multiband antenna with band-rejection features for mobile broadband satellite communications," Progress In Electromagnetics Research C, Vol. 68, 95-106, 2016.
doi:10.2528/PIERC16073103

8. Chaudhary, S. S., R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies," Indian J. Biochem. Biophys., Vol. 21, 76-79, 1984.

9. Joines, W. T., Y. Z. Dhenxing, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Med. Phys., Vol. 21, 547-550, 1994.
doi:10.1118/1.597312

10. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. C. Hagness, "Database of 3D grid-based numerical breast phantoms for use in computational electromagnetics simulations,", http://uwcem.ece.wisc.edunhome.htm.

11. Zahirul Alam, A. H. M., I. Md. Rafiqul, and S. Khan, "Tuning fork UWB antenna with unsymmetrical feed line," PIERS Proceedings, 1457-1460, Moscow, Russia, August 19–23, 2012.

12. Ali, J. K., M. T. Yassen, M. R. Hussan, and M. F. Hasan, "A new compact ultra wideband printed monopole antenna with reduced ground plane and band notch characterization," PIERS Proceedings, 1531-1536, Kuala Lumpur, Malaysia, March 27–30, 2012.

13. AlShehri, S. A. and S. Khatun, "UWB imaging for breast cancer detectionusing neural network," Progress In Electromagnetics Research C, Vol. 7, 79-83, 2009.
doi:10.2528/PIERC09031202