Vol. 63
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-12-07
Combined Electromechanical Analysis for a Very-Low-Frequency Complex Structure T-Type Transmitting Antenna
By
Progress In Electromagnetics Research M, Vol. 63, 107-117, 2018
Abstract
A combined analysis method for determining the structural and electrical performance of very-low-frequency (VLF) T-type transmitting antennas with a complex structure is proposed. By using the finite element method for analyzing the antenna's structural performance and the moment method for determining the antenna's electrical performance, the structural entity model of the antenna is transformed into an electrical model by extracting the position and displacement information of the antenna curtain, thereby determining the electrical performance index of the transmitting antenna. An actual VLF T-type transmitting antenna is analyzed using this method. A comparison between the calculated results and the measured data shows that this method is effective and feasible. In addition, by optimizing the sag of the antenna's curtain, it is demonstrated that the radiation efficiency of the transmitting antenna can be further improved using this method, and the radiation patterns of the initial state and optimized antenna stay almost the same. This method provides guidance for the synthesis design of other VLF transmitting antennas with complex structures.
Citation
Ya-Long Yan, Chao Liu, Yin-Hui Dong, and Huaning Wu, "Combined Electromechanical Analysis for a Very-Low-Frequency Complex Structure T-Type Transmitting Antenna," Progress In Electromagnetics Research M, Vol. 63, 107-117, 2018.
doi:10.2528/PIERM17102102
References

1. Duan, B., "Review of multidisciplinary optimization of antenna structures in China," Electronics Machinery Engineering, Vol. 79, No. 3, 1-6, 1999.

2. Bahadori, K. and Y. Rahmat, "Characterization of effects of periodic and aperiodic surface distortions on membrane reflector antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 9, 2782-2791, 2005.
doi:10.1109/TAP.2005.854529

3. Boag, A. and C. Letrou, "Fast radiation pattern evaluation for lens and reflector antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 5, 1063-1068, 2003.
doi:10.1109/TAP.2003.811498

4. Gui, Y., Z. Yi, B. Duan, et al. "A novel contoured beam synthesis method for astromesh reflectors based on integrated electromagnetic-structural design," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 181-185, 2017.

5. Misawa, M., "Stiffness design of deployable satellite antennas in deployed configuration," Journal Spacecraft and Rockets, Vol. 35, No. 3, 380-386, 1998.
doi:10.2514/2.3339

6. Mobrem, M., "Methods of analyzing surface accuracy of large antenna structure to manufacturing tolerances," AIAA 2003-1453, 1-10, 2003.

7. Rahmat, Y., "Random surface error effects on offset cylindrical reflector antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 6, 1331-1337, 2003.
doi:10.1109/TAP.2003.812256

8. Zong, Y., "Effects of periodic geometric error of astro mesh reflector surface on radiation pattern and its elimination method," ACTA Electronica Sinica, Vol. 42, No. 5, 963-970, 2014.

9. Bahadori, K. and Y. Rahmat-Samii, "Characterization of effects of periodic and aperiodic surface distortions on membrane reflector antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 9, 2782-2791, 2005.
doi:10.1109/TAP.2005.854529

10. Dong, Y., C. Liu, G. Dai, and Y. Yan, "Study of VLF transmit antenna impedance characteristic based on top-load configuration," Chinese Journal of Radio Science, Vol. 29, No. 4, 763-768, 2014.

11. Eric, C. B. and A. R. Michael, "Dual-frequency distortion predictions for the cutler VLF array," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 3, 1016-1035, 2003.
doi:10.1109/TAES.2003.1238753

12. Michael, B. C., "Submarine communications," IEEE Communications Magazine, Vol. 19, No. 6, 16-25, 1981.
doi:10.1109/MCOM.1981.1090583

13. Timothy, W. C., S. I. Umran, and F. B. Timothy, "Terminal impedance and antenna current distribution of a VLF electric dipole in the inner magnetosphere," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2454-2468, 2008.
doi:10.1109/TAP.2008.927497

14. Taylor, R. L., The Finite Element Method: Its Basis & Fundamental, 7th Ed., 549-550, World Book Publishing Housing, Beijing, 2015.

15. Clarke, S. and U. Jakobus, "Dielectric material modeling in the MOM-based code FEKO," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 5, 140-147, 2005.
doi:10.1109/MAP.2005.1599186

16. Tanaka, H., "Design optimization studies for large-scale contoured beam deployable satellite antennas," Acta Astronautica, Vol. 58, 443-451, 2006.
doi:10.1016/j.actaastro.2005.12.015

17. Zhang, Y. and L. Zheng, "Simulation research on electrical performance of VLF umbrella antennas on complex earth," China CIO News, Vol. 11, 15-16, 2012.

18. Martings, C. and E. Higashi, "A parametric analysis of steel catenary risers: Fatigue behavior near the top," Proceedings of the 10th International Offshore and Polar Engineering Conference, 54-59, Seattle, USA, 2000.

19. Song, Z., H. Liang, J. Chen, et al. "Form finding and wind load analysis of T-type antenna structure," Spatial Structures, Vol. 18, No. 1, 66-70, 2012.

20. Ministry of Housing and Urban-Rural Development of China Code for Design of High-Rising Structures (GB 50135-2006), China Planning Press, Beijing, 2006.