Vol. 64
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-02-10
Efficacy of Magnetic and Capacitive Hyperthermia on Hepatocellular Carcinoma
By
Progress In Electromagnetics Research M, Vol. 64, 181-192, 2018
Abstract
The efficacy of applying magnetic hyperthermia (MHT) and capacitive hyperthermia (CHT) to treat hepatocellular carcinoma (HCC) is studied. Magnetoquasistatic (MQS) and electroquasistatic (EQS) formulations are develpoed to compute the magnetic field and electric field dirtributions, respectively, which are numerically solved by using finite element method. The heat transport equation is applied to compute the temperature distribution in the treated area. Simulation results of temperature distribution are used to compare the efficacy of MHT and CHT.
Citation
Chien-Chang Chen, and Jean-Fu Kiang, "Efficacy of Magnetic and Capacitive Hyperthermia on Hepatocellular Carcinoma," Progress In Electromagnetics Research M, Vol. 64, 181-192, 2018.
doi:10.2528/PIERM17101904
References

1. Raoof, M. and S. A. Curley, "Non-invasive radiofrequency-induced targeted hyperthermia for the treatment of hepatocellular carcinoma," Int. J. Hepatol., 676957, May 2011.

2. Moroz, P., S. K. Jones, and B. N. Gray, "Status of hyperthermia in the treatment of advanced liver cancer," J. Surg. Oncol., Vol. 77, 259-269, 2001.
doi:10.1002/jso.1106

3. Crocetti, L. and R. Lencioni, "Thermal ablation of hepatocellular carcinoma," Cancer Imaging, Vol. 8, 19-26, 2008.
doi:10.1102/1470-7330.2008.0004

4. Corr, S. J., B. T. Cisneros, L. Green, M. Raoof, and S. A. Curley, "Protocols for assessing radiofrequency interactions with gold nanoparticles and biological systems for non-invasive hyperthermia cancer therapy," J. Vis. Exp., Vol. 78, e50480, Aug. 2013.

5. Kotsuka, Y., H. Kayahara, K. Murano, H. Matsui, and M. Hamuro, "Local inductive heating method using novel high-temperature implant for thermal treatment of luminal organs," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 10, 2574-2580, Oct. 2009.
doi:10.1109/TMTT.2009.2029743

6. Iero, D. A. M., T. Isernia, A. F. Morabito, I. Catapano, and L. Crocco, "Optimal constrained field focusing for hyperthermia cancer therapy: A feasibility assessment on realistic phantoms," Progress In Electromagnetics Research, Vol. 102, 125-141, 2010.
doi:10.2528/PIER10011207

7. Yamamoto, K. and Y. Anaka, "Radio frequency capacitive hyperthermia for unresectable hepatic cancers," J. Gastroenterol., Vol. 32, 361-366, 1997.
doi:10.1007/BF02934494

8. Jamil, M. and E. Y. K. Ng, "To optimize the efficacy of bioheat transfer in capacitive hyperthermia: A physical perspective," J. Therm. Biol., Vol. 38, No. 5, 272-279, Jul. 2013.
doi:10.1016/j.jtherbio.2013.03.007

9. Trujillo-Romero, C. J., S. Garcia-Jimeno, A. Vera-Hernandez, L. Leija-Salas, and J. Estelrich, "Using nanoparticles for enhancing the focusing heating effect of an external waveguide applicator for oncology hyperthermia: Evaluation in muscle and tumor phantoms," Progress In Electromagnetics Research, Vol. 121, 343-363, 2011.
doi:10.2528/PIER11092911

10. Vrba, D., D. B. Rodrigues, J. Vrba (Jr.), and P. R. Stauffer, "Metamaterial antenna arrays for improved uniformity of microwave hyperthermia treatments," Progress In Electromagnetics Research, Vol. 156, 1-12, 2016.
doi:10.2528/PIER16012702

11. Staruch, R., R. Chopra, and K. Hynynen, "Hyperthermia in bone generated with MR imaging controlled focused ultrasound: Control strategies and drug delivery," Radiology, Vol. 263, No. 1, 117-127, Apr. 2012.
doi:10.1148/radiol.11111189

12. Chen, X., C. J. Diederich, J. H. Wootton, J. Pouliot, and I-C. Hsu, "Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia," Int. J. Hyperthermia, Vol. 26, No. 1, 39-55, Feb. 2010.
doi:10.3109/02656730903341332

13. Jordan, A., P.Wust, H. F¨ahling, W. John, A. Hinz, and R. Felix, "Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia," Int. J. Hyperthermia, Vol. 9, No. 1, 51-68, Jan.-Feb. 1993.
doi:10.3109/02656739309061478

14. Li, F.-E., W.-H. Yan, Y.-H. Guo, H. Qi, and H.-X. Zhou, "Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer," Int. J. Hyperthermia, Vol. 25, No. 5, 383-391, Aug. 2009.
doi:10.1080/02656730902834949

15. Chang, P. E. J., S. Purushotham, H. Rumpel, I. H. C. Kee, R. T. H. Ng, P. K. H. Chow, R. V. Ramanujan, and C. K. Tan, "Novel dual magnetic drug targeting and hyperthermia therapy in hepatocellular carcinoma with thermosensitive polymer-coated nanoparticles," J. Gastroint. Dig. Syst., Vol. 4, No. 4, 2014.

16. Dong, Y. and G. Wu, "Analysis of short and long term therapeutic effects of radiofrequency hyperthermia combined with conformal radiotherapy in hepatocellular carcinoma," J. Balkan Union Oncology, Vol. 21, No. 2, 407-411, Mar. 2016.

17. Nagata, Y., M. Hiraoka, Y. Nishimura, S. Masunaga, M. Mitumori, Y. Okuno, M. Fujishiro, S. Kanamori, N. Horii, K. Akuta, K. Sasai, M. Abe, and Y. Fukuda, "Clinical results of radiofrequency hyperthermia for malignant liver tumors," Int. J. Radiat. Oncol. Biol. Phys., Vol. 38, No. 2, 359-365, May 1997.
doi:10.1016/S0360-3016(96)00625-6

18. Shen, L. C. and J. A. Kong, Applied Electromagnetism, Ch. 15, CI Engineering, 1995.

19. Li, Y.-L., S. Sun, Q. I. Dai, and W. C. Chew, "Finite element implementation of the generalized-Lorenz gauged A-Φ formulation for low-frequency circuit modeling," IEEE Trans. Antennas Propagat., Vol. 64, No. 10, 4355-4364, Jul. 2016.
doi:10.1109/TAP.2016.2593748

20. Zhu, Y. and A. C. Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field Modeling, Wiley-IEEE Press, 2006.
doi:10.1002/0471786381

21. Barrett, R., M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, 1994.
doi:10.1137/1.9781611971538

22. Kim, K., T. Seo, K. Sim, and Y. Kwon, "Magnetic nanoparticle-assisted microwave hyperthermia using an active integrated heat applicator," IEEE Trans. Microwave Theory Tech., Vol. 64, No. 7, 2184-2197, Jul. 2016.
doi:10.1109/TMTT.2016.2573276

23. Tsuda, N., K. Kuroda, and Y. Suzuki, "An inverse method to optimize heating conditions in RF-capacitive hyperthermia," IEEE Trans. Biomed. Eng., Vol. 43, No. 10, 1029-1037, 1996.
doi:10.1109/10.536904

24. Sadiku, M. N. O., Numerical Techniques in Electromagnetics, 2nd Ed., Ch. 3, CRC Press, Jul. 2000.

25. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Phys. Med. Biol., Vol. 41, No. 11, 2251-2269, Nov. 1996.
doi:10.1088/0031-9155/41/11/002

26. Wang, H., Y. He, M. Yang, Q.-G. Yan, F.-S. You, F. Fu, T. Wang, X.-Y. Huo, X.-Z. Dong, and X.-T. Shi, "Dielectric properties of human liver from 10 Hz to 100 MHz: Normal liver, hepatocellular carcinoma, hepatic fibrosis and liver hemangioma," Biomed. Mater. Eng., Vol. 24, No. 6, 2725-2732, 2013.

27. Midi, N. S., K. Sasaki, R.-I. Ohyama, and N. Shinyashiki, "Broadband complex dielectric constants of water and sodium chloride aqueous solutions with different DC conductivities," IEEJ Trans. Electrical Electronic Engineering, Vol. 9, No. s1, s8-s12, Oct. 2014.
doi:10.1002/tee.22036

28. Rattanadech, P. and P. Keangin, "Numerical study of heat transfer and blood flow in two-layered porous liver tissue during microwave ablation process using single and double slot antenna," Int. J. Heat Mass Tran., Vol. 58, No. 1-2, 457-470, Mar. 2013.
doi:10.1016/j.ijheatmasstransfer.2012.10.043

29. Goumard, C., F. Perdigao, J. Cazejust, S. Zalinski, O. Soubrane, and O. Scatton, "Is computed tomography volumetric assessment of the liver reliable in patients with cirrhosis?," HPB (Oxford), Vol. 16, No. 2, 188-194, Feb. 2014.
doi:10.1111/hpb.12110

30. Astefanoaei, I., I. Dumitru, H. Chiriac, and A. Stancu, "Use of the Fe-Cr-Nb-B systems with low Curie temperature as mediators in magnetic hyperthermia," IEEE Trans. Magn., Vol. 50, No. 11, 7400904, Nov. 2014.

31. Ahmed, M., Z.-J. Liu, S. Humphries, and S. N. Goldberg, "Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation," Int. J. Hyperthermia, Vol. 24, No. 7, 577-588, Nov. 2008.
doi:10.1080/02656730802192661

32. Ippolito, D., S. Sironi, M. Pozzi, L. Antolini, L. Ratti, C. Alberzoni, E. B. Leone, F. Meloni, M. G. Valsecchi, and F. Fazio, "Hepatocellular carcinoma in cirrhotic liver disease: Functional computed tomography with perfusion imaging in the assessment of tumor vascularization," Academic Radiology, Vol. 15, No. 7, 919-927, Jul. 2008.
doi:10.1016/j.acra.2008.02.005

33. Ippolito, D., C. Capraro, A. Casiraghi, C. Cestari, and S. Sironi, "Quantitative assessment of tumour associated neovascularisation in patients with liver cirrhosis and hepatocellular carcinoma: Role of dynamic-CT perfusion imaging," Eur. Radiol., Vol. 2012, No. 22, 803-811, 2012.
doi:10.1007/s00330-011-2307-z

34. Wang, Z., Z. Ying, A. Bosy-Westphal, J. Zhang, B. Schautz, W. Later, S. B. Heymsfield, and M. J. Muller, "Specific metabolic rates of major organs and tissues across adulthood: Evaluation by mechanistic model of resting energy expenditure," Am. J. Clin. Nutr., Vol. 92, No. 6, 1369-1377, Dec. 2010.
doi:10.3945/ajcn.2010.29885

35. Urdaneta, M. and P. Wahid, "A study on enhanced hyperthermia treatment for liver cancer using magnetic nanoparticles," IEEE Microwave RF Conf., Dec. 2014.

36. Liu, Z.-J., M. Ahmed, Y. Weinstein, M. Yi, R. L. Mahajan, and S. N. Goldberg, "Characterization of the RF ablation-induced `oven-effect': The importance of background tissue thermal conductivity on tissue heating," Int. J. Hyperthermia, Vol. 22, No. 4, 327-342, Jun. 2006.
doi:10.1080/02656730600609122

37. Lang, J., B. Erdmann, and M. Seebass, "Impact of nonlinear heat transfer on temperature control in regional hyperthermia," IEEE Trans. Biomed. Eng., Vol. 46, No. 9, 1129-1138, Sep. 1999.
doi:10.1109/10.784145

38. Nelson, D. A., S. Charbonnel, A. R. Curran, E. A. Marttila, D. Fiala, P. A. Mason, and J. M. Ziriax, "A high-resolution voxel model for predicting local tissue temperatures in humans subjected to warm and hot environments," J. Biomech. Eng., Vol. 131, No. 4, 041003-1-12, Jan. 2009.
doi:10.1115/1.3002765

39. Rossmann, C. and D. Haemmerich, "Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures," Crit. Rev. Biomed. Eng., Vol. 42, No. 6, 467-492, Nov.-Dec. 2014.
doi:10.1615/CritRevBiomedEng.2015012486

40. Nieskoski, M. D. and B. S. Trembly, "Comparison of a single optimized coil and a Helmholtz pair for magnetic nanoparticle hyperthermia," IEEE Trans. Biomed. Eng., Vol. 61, No. 6, 1642-1650, Jun. 2014.
doi:10.1109/TBME.2013.2296231

41. Pearce, J., A. Giustini, R. Stigliano, and P. J. Hoopes, "Magnetic heating of nanoparticles: The importance of particle clustering to achieve therapeutic temperatures," J. Nanotechnol. Eng. Med., Vol. 4, No. 1, Feb. 2013.
doi:10.1115/1.4024904

42. Trujillo-Romero, C. J., L. Leija-Salas, and A. Vera-Hernandez, "FEM modeling for performance evaluation of an electromagnetic oncology deep hyperthermia applicator when using monopole, inverted T, and plate antennas," Progress In Electromagnetics Research, Vol. 120, 99-120, 2011.
doi:10.2528/PIER11071809