1. Raoof, M. and S. A. Curley, "Non-invasive radiofrequency-induced targeted hyperthermia for the treatment of hepatocellular carcinoma," Int. J. Hepatol., 676957, May 2011.
2. Moroz, P., S. K. Jones, and B. N. Gray, "Status of hyperthermia in the treatment of advanced liver cancer," J. Surg. Oncol., Vol. 77, 259-269, 2001.
doi:10.1002/jso.1106
3. Crocetti, L. and R. Lencioni, "Thermal ablation of hepatocellular carcinoma," Cancer Imaging, Vol. 8, 19-26, 2008.
doi:10.1102/1470-7330.2008.0004
4. Corr, S. J., B. T. Cisneros, L. Green, M. Raoof, and S. A. Curley, "Protocols for assessing radiofrequency interactions with gold nanoparticles and biological systems for non-invasive hyperthermia cancer therapy," J. Vis. Exp., Vol. 78, e50480, Aug. 2013.
5. Kotsuka, Y., H. Kayahara, K. Murano, H. Matsui, and M. Hamuro, "Local inductive heating method using novel high-temperature implant for thermal treatment of luminal organs," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 10, 2574-2580, Oct. 2009.
doi:10.1109/TMTT.2009.2029743
6. Iero, D. A. M., T. Isernia, A. F. Morabito, I. Catapano, and L. Crocco, "Optimal constrained field focusing for hyperthermia cancer therapy: A feasibility assessment on realistic phantoms," Progress In Electromagnetics Research, Vol. 102, 125-141, 2010.
doi:10.2528/PIER10011207
7. Yamamoto, K. and Y. Anaka, "Radio frequency capacitive hyperthermia for unresectable hepatic cancers," J. Gastroenterol., Vol. 32, 361-366, 1997.
doi:10.1007/BF02934494
8. Jamil, M. and E. Y. K. Ng, "To optimize the efficacy of bioheat transfer in capacitive hyperthermia: A physical perspective," J. Therm. Biol., Vol. 38, No. 5, 272-279, Jul. 2013.
doi:10.1016/j.jtherbio.2013.03.007
9. Trujillo-Romero, C. J., S. Garcia-Jimeno, A. Vera-Hernandez, L. Leija-Salas, and J. Estelrich, "Using nanoparticles for enhancing the focusing heating effect of an external waveguide applicator for oncology hyperthermia: Evaluation in muscle and tumor phantoms," Progress In Electromagnetics Research, Vol. 121, 343-363, 2011.
doi:10.2528/PIER11092911
10. Vrba, D., D. B. Rodrigues, J. Vrba (Jr.), and P. R. Stauffer, "Metamaterial antenna arrays for improved uniformity of microwave hyperthermia treatments," Progress In Electromagnetics Research, Vol. 156, 1-12, 2016.
doi:10.2528/PIER16012702
11. Staruch, R., R. Chopra, and K. Hynynen, "Hyperthermia in bone generated with MR imaging controlled focused ultrasound: Control strategies and drug delivery," Radiology, Vol. 263, No. 1, 117-127, Apr. 2012.
doi:10.1148/radiol.11111189
12. Chen, X., C. J. Diederich, J. H. Wootton, J. Pouliot, and I-C. Hsu, "Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia," Int. J. Hyperthermia, Vol. 26, No. 1, 39-55, Feb. 2010.
doi:10.3109/02656730903341332
13. Jordan, A., P.Wust, H. F¨ahling, W. John, A. Hinz, and R. Felix, "Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia," Int. J. Hyperthermia, Vol. 9, No. 1, 51-68, Jan.-Feb. 1993.
doi:10.3109/02656739309061478
14. Li, F.-E., W.-H. Yan, Y.-H. Guo, H. Qi, and H.-X. Zhou, "Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer," Int. J. Hyperthermia, Vol. 25, No. 5, 383-391, Aug. 2009.
doi:10.1080/02656730902834949
15. Chang, P. E. J., S. Purushotham, H. Rumpel, I. H. C. Kee, R. T. H. Ng, P. K. H. Chow, R. V. Ramanujan, and C. K. Tan, "Novel dual magnetic drug targeting and hyperthermia therapy in hepatocellular carcinoma with thermosensitive polymer-coated nanoparticles," J. Gastroint. Dig. Syst., Vol. 4, No. 4, 2014.
16. Dong, Y. and G. Wu, "Analysis of short and long term therapeutic effects of radiofrequency hyperthermia combined with conformal radiotherapy in hepatocellular carcinoma," J. Balkan Union Oncology, Vol. 21, No. 2, 407-411, Mar. 2016.
17. Nagata, Y., M. Hiraoka, Y. Nishimura, S. Masunaga, M. Mitumori, Y. Okuno, M. Fujishiro, S. Kanamori, N. Horii, K. Akuta, K. Sasai, M. Abe, and Y. Fukuda, "Clinical results of radiofrequency hyperthermia for malignant liver tumors," Int. J. Radiat. Oncol. Biol. Phys., Vol. 38, No. 2, 359-365, May 1997.
doi:10.1016/S0360-3016(96)00625-6
18. Shen, L. C. and J. A. Kong, Applied Electromagnetism, Ch. 15, CI Engineering, 1995.
19. Li, Y.-L., S. Sun, Q. I. Dai, and W. C. Chew, "Finite element implementation of the generalized-Lorenz gauged A-Φ formulation for low-frequency circuit modeling," IEEE Trans. Antennas Propagat., Vol. 64, No. 10, 4355-4364, Jul. 2016.
doi:10.1109/TAP.2016.2593748
20. Zhu, Y. and A. C. Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field Modeling, Wiley-IEEE Press, 2006.
doi:10.1002/0471786381
21. Barrett, R., M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, 1994.
doi:10.1137/1.9781611971538
22. Kim, K., T. Seo, K. Sim, and Y. Kwon, "Magnetic nanoparticle-assisted microwave hyperthermia using an active integrated heat applicator," IEEE Trans. Microwave Theory Tech., Vol. 64, No. 7, 2184-2197, Jul. 2016.
doi:10.1109/TMTT.2016.2573276
23. Tsuda, N., K. Kuroda, and Y. Suzuki, "An inverse method to optimize heating conditions in RF-capacitive hyperthermia," IEEE Trans. Biomed. Eng., Vol. 43, No. 10, 1029-1037, 1996.
doi:10.1109/10.536904
24. Sadiku, M. N. O., Numerical Techniques in Electromagnetics, 2nd Ed., Ch. 3, CRC Press, Jul. 2000.
25. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Phys. Med. Biol., Vol. 41, No. 11, 2251-2269, Nov. 1996.
doi:10.1088/0031-9155/41/11/002
26. Wang, H., Y. He, M. Yang, Q.-G. Yan, F.-S. You, F. Fu, T. Wang, X.-Y. Huo, X.-Z. Dong, and X.-T. Shi, "Dielectric properties of human liver from 10 Hz to 100 MHz: Normal liver, hepatocellular carcinoma, hepatic fibrosis and liver hemangioma," Biomed. Mater. Eng., Vol. 24, No. 6, 2725-2732, 2013.
27. Midi, N. S., K. Sasaki, R.-I. Ohyama, and N. Shinyashiki, "Broadband complex dielectric constants of water and sodium chloride aqueous solutions with different DC conductivities," IEEJ Trans. Electrical Electronic Engineering, Vol. 9, No. s1, s8-s12, Oct. 2014.
doi:10.1002/tee.22036
28. Rattanadech, P. and P. Keangin, "Numerical study of heat transfer and blood flow in two-layered porous liver tissue during microwave ablation process using single and double slot antenna," Int. J. Heat Mass Tran., Vol. 58, No. 1-2, 457-470, Mar. 2013.
doi:10.1016/j.ijheatmasstransfer.2012.10.043
29. Goumard, C., F. Perdigao, J. Cazejust, S. Zalinski, O. Soubrane, and O. Scatton, "Is computed tomography volumetric assessment of the liver reliable in patients with cirrhosis?," HPB (Oxford), Vol. 16, No. 2, 188-194, Feb. 2014.
doi:10.1111/hpb.12110
30. Astefanoaei, I., I. Dumitru, H. Chiriac, and A. Stancu, "Use of the Fe-Cr-Nb-B systems with low Curie temperature as mediators in magnetic hyperthermia," IEEE Trans. Magn., Vol. 50, No. 11, 7400904, Nov. 2014.
31. Ahmed, M., Z.-J. Liu, S. Humphries, and S. N. Goldberg, "Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation," Int. J. Hyperthermia, Vol. 24, No. 7, 577-588, Nov. 2008.
doi:10.1080/02656730802192661
32. Ippolito, D., S. Sironi, M. Pozzi, L. Antolini, L. Ratti, C. Alberzoni, E. B. Leone, F. Meloni, M. G. Valsecchi, and F. Fazio, "Hepatocellular carcinoma in cirrhotic liver disease: Functional computed tomography with perfusion imaging in the assessment of tumor vascularization," Academic Radiology, Vol. 15, No. 7, 919-927, Jul. 2008.
doi:10.1016/j.acra.2008.02.005
33. Ippolito, D., C. Capraro, A. Casiraghi, C. Cestari, and S. Sironi, "Quantitative assessment of tumour associated neovascularisation in patients with liver cirrhosis and hepatocellular carcinoma: Role of dynamic-CT perfusion imaging," Eur. Radiol., Vol. 2012, No. 22, 803-811, 2012.
doi:10.1007/s00330-011-2307-z
34. Wang, Z., Z. Ying, A. Bosy-Westphal, J. Zhang, B. Schautz, W. Later, S. B. Heymsfield, and M. J. Muller, "Specific metabolic rates of major organs and tissues across adulthood: Evaluation by mechanistic model of resting energy expenditure," Am. J. Clin. Nutr., Vol. 92, No. 6, 1369-1377, Dec. 2010.
doi:10.3945/ajcn.2010.29885
35. Urdaneta, M. and P. Wahid, "A study on enhanced hyperthermia treatment for liver cancer using magnetic nanoparticles," IEEE Microwave RF Conf., Dec. 2014.
36. Liu, Z.-J., M. Ahmed, Y. Weinstein, M. Yi, R. L. Mahajan, and S. N. Goldberg, "Characterization of the RF ablation-induced `oven-effect': The importance of background tissue thermal conductivity on tissue heating," Int. J. Hyperthermia, Vol. 22, No. 4, 327-342, Jun. 2006.
doi:10.1080/02656730600609122
37. Lang, J., B. Erdmann, and M. Seebass, "Impact of nonlinear heat transfer on temperature control in regional hyperthermia," IEEE Trans. Biomed. Eng., Vol. 46, No. 9, 1129-1138, Sep. 1999.
doi:10.1109/10.784145
38. Nelson, D. A., S. Charbonnel, A. R. Curran, E. A. Marttila, D. Fiala, P. A. Mason, and J. M. Ziriax, "A high-resolution voxel model for predicting local tissue temperatures in humans subjected to warm and hot environments," J. Biomech. Eng., Vol. 131, No. 4, 041003-1-12, Jan. 2009.
doi:10.1115/1.3002765
39. Rossmann, C. and D. Haemmerich, "Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures," Crit. Rev. Biomed. Eng., Vol. 42, No. 6, 467-492, Nov.-Dec. 2014.
doi:10.1615/CritRevBiomedEng.2015012486
40. Nieskoski, M. D. and B. S. Trembly, "Comparison of a single optimized coil and a Helmholtz pair for magnetic nanoparticle hyperthermia," IEEE Trans. Biomed. Eng., Vol. 61, No. 6, 1642-1650, Jun. 2014.
doi:10.1109/TBME.2013.2296231
41. Pearce, J., A. Giustini, R. Stigliano, and P. J. Hoopes, "Magnetic heating of nanoparticles: The importance of particle clustering to achieve therapeutic temperatures," J. Nanotechnol. Eng. Med., Vol. 4, No. 1, Feb. 2013.
doi:10.1115/1.4024904
42. Trujillo-Romero, C. J., L. Leija-Salas, and A. Vera-Hernandez, "FEM modeling for performance evaluation of an electromagnetic oncology deep hyperthermia applicator when using monopole, inverted T, and plate antennas," Progress In Electromagnetics Research, Vol. 120, 99-120, 2011.
doi:10.2528/PIER11071809