Vol. 64
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-01-19
3-d V2V MIMO Channel Modeling in Different Roadway Scenarios with Moving Scatterers
By
Progress In Electromagnetics Research M, Vol. 64, 43-54, 2018
Abstract
Vehicle-to-Vehicle (V2V) communications are characterized by dynamic environments due to the movement of the transceiver and scatterers. This characteristic makes V2V channel modeling particularly challenging. In this paper, a three-dimensional (3-D) geometrical propagation model and a generalized 3-D reference model that include line-of-sight (LoS) and single bounced (SB) rays are proposed for multiple-input-multiple-output (MIMO) V2V multipath fading in different roadway scenarios (e.g., flat roads, intersections and arcuate overpasses). In the models, the transceiver can move with nonlinearly varying velocities in nonlinearly varying directions, and each scatterer can move with a random velocity in a random direction. The corresponding space-time correlation functions (ST-CFs) are analytically investigated and numerically simulated in different roadway scenarios. Finally, the modeled Doppler power spectral density (D-PSD) is compared with the available measured data. The close agreements between the modeled and measured D-PSD curves confirm the utility of the proposed model.
Citation
Derong Du, Xiaoping Zeng, Xin Jian, Fan Yang, and Meng Sun, "3-d V2V MIMO Channel Modeling in Different Roadway Scenarios with Moving Scatterers," Progress In Electromagnetics Research M, Vol. 64, 43-54, 2018.
doi:10.2528/PIERM17101901
References

1. Walter, M., D. Shutin, and U.-C. Fiebig, "Delay-dependent doppler probability density functions for vehicle-to-vehicle scatter channels," IEEE Trans. Antennas and Propag., Vol. 62, No. 4, 2238-2249, Apr. 2014.
doi:10.1109/TAP.2014.2301432

2. Yuan, Y., C. X. Wang, X. Cheng, B. Ai, and D. I. Laurenson, "Novel 3D geometry-based stochastic models for non-isotropic MIMO vehicle-to-vehicle channels," IEEE Trans. Wireless Commun., Vol. 13, No. 1, 298-309, Jan. 2014.
doi:10.1109/TWC.2013.120313.130434

3. Ndzi, D. L., K. Stuart, S. Toautachone, B. Vuksanovic, and D. A. Sanders, "Wideband sounder for dynamic and static wireless channel characterisation: Urban picocell channel model," Progress In Electromagnetics Research, Vol. 113, 285-312, 2011.
doi:10.2528/PIER10122905

4. Chelli, A. and M. Pätzold, "The impact of fixed and moving scatterers on the statistics of MIMO vehicle-to-vehicle channels," Proc. IEEE VTC Spring, 1-6, Barcelona, Spain, Apr. 2009.

5. Chelli, A. and M. Pätzold, "A dynamic MIMO vehicle-to-vehicle channel model derived from the geometrical street model," Proc. IEEE VTC Fall, 1-6, San Francisco, CA, USA, Sep. 2011.

6. Borhani, A. and M. Pätzold, "Modeling of vehicle-to-vehicle channels in the presence of moving scatterers," Proc. 76th IEEE VTC-Fall, 1-5, Quebec City, QC, Canada, Sep. 2012.

7. Borhani, A. and M. Pätzold, "Correlation and spectral properties of vehicle-to-vehicle channels in the presence of moving scatterers," IEEE Trans. Veh. Technol., Vol. 62, No. 9, 4228-4239, Nov. 2013.
doi:10.1109/TVT.2013.2280674

8. Soltani, M. D., M. Alimadadi, Y. Seyedi, and H. Amindavar, "Modeling of Doppler spectrum in V2V urban canyon oncoming environment," Proc. IEEE Int. Workshop IST, 1155-1160, Tehran, Iran, Sep. 2014.

9. Soltani, M. D., M. Alimadadi, and A. Mohammadi, "Modeling of mobile scatterer clusters for Doppler spectrum in wideband vehicle-to-vehicle communication channels," IEEE Commun. Lett., Vol. 18, No. 4, 628-631, Apr. 2014.
doi:10.1109/LCOMM.2014.030614.132856

10. Zajić, A. G., "Impact of moving scatterers on vehicle-to-vehicle narrow-band channel characteristics," IEEE Trans. Veh. Technol., Vol. 63, No. 7, 3094-3106, Sep. 2014.
doi:10.1109/TVT.2014.2299239

11. Zajić, A. G., "Modeling impact of moving scatterers on Doppler spectrum in wideband vehicle-to-vehicle channels," Proc. Eur. Conf. Antennas Propag., 1-5, Lisbon, May 2015.

12. Liang, X., X. Zhao, S. Li, Q. Wang, and J. Li, "A dynamic geometry-based scattering model for street vehicle-to-vehicle wideband MIMO channels," Proc. IEEE 26th Annual International PIMRC, 2239-2243, Hong Kong, Sep. 2015.

13. Zhao, X., X. Liang, S. Li, and B. Ai, "Two-cylinder and multi-ring GBSSM for realizing and modeling of vehicle-to-vehicle wideband MIMO channels," IEEE Trans. Intell. Trans. Syst., Vol. 17, No. 10, 2787-2799, Oct. 2016.
doi:10.1109/TITS.2016.2526652

14. Fuhl, J., J.-P. Rossi, and E. Bonek, "High-resolution 3-D direction-ofarrival determination for urban mobile radio," IEEE Trans. Antennas Propag., Vol. 45, No. 4, 672-682, Apr. 1997.
doi:10.1109/8.564093

15. Kalliola, K., K. Sulonen, H. Laitinen, O. Kivelas, J. Krogerus, and P. Vainikainen, "Angular power distribution and mean effective gain of mobile antenna in different propagation environments," IEEE Trans. Veh. Technol., Vol. 51, No. 5, 823-838, Dec. 2002.
doi:10.1109/TVT.2002.800639

16. Karadimas, P. and D. Matolak, "Generic stochastic modeling of vehicle-to-vehicle wireless channels," Vehicular Communications, Vol. 1, No. 4, 153-167, Aug. 2014.
doi:10.1016/j.vehcom.2014.08.001

17. Du, D., X. Zeng, X. Jian, L. Miao, and H. Wang, "Three-dimensional vehicle-to-vehicle channel modeling with multiple moving scatterers," Mobile Information Systems, Vol. 2017, 1-14, Jul. 2017.

18. Dahech, W., M. Pätzold, and N. Youssef, "A dynamic mobile-to-mobile multipath fading channel model taking account of velocity variations of the mobile stations," Proc. IEEE EuCAP, 1-4, Lisbon, Apr. 2015.

19. Zajić, A. G., G. Stüber, T. Pratt, and S. Nguyen, "Wideband MIMO mobile-to-mobile channels: Geometry-based statistical modeling with experimental verification," IEEE Trans. Veh. Technol., Vol. 58, No. 2, 517-534, Feb. 2009.
doi:10.1109/TVT.2008.928001