Vol. 71
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-11-25
Graphene-Based THz Tunable Bandstop Filter with Constant Absolute Bandwidth
By
Progress In Electromagnetics Research Letters, Vol. 71, 141-147, 2017
Abstract
In this paper, a novel terahertz tunable bandstop filter with constant absolute bandwidth is proposed, which consists of graphene-based three-section L resonators. In order to perform bandstop property, the L resonator is used and analyzed in details based on the traditional Z matrix and ABCD matrix. With the introduction of graphene materials, the operating frequency of bandstop filter can be extended to terahertz. Moreover, the tunable performance with constant absolute bandwidth can be achieved by only loading different chemical potentials on a graphene surface. For demonstration, a terahertz tunable bandstop filter prototype is designed and simulated with chemical potentials of 0.1, 0.3, and 1 eV. The simulated results agree well with the anticipation perfectly.
Citation
Mengdan Kong, Yongle Wu, Zheng Zhuang, Weimin Wang, and Yuan'an Liu, "Graphene-Based THz Tunable Bandstop Filter with Constant Absolute Bandwidth," Progress In Electromagnetics Research Letters, Vol. 71, 141-147, 2017.
doi:10.2528/PIERL17101301
References

1. Zhang, X. Y., C. H. Chan, Q. Xue, and B.-J. Hu, "RF tunable bandstop filters with constant bandwidth based on a doublet configuration," IEEE Trans. Ind. Electron., Vol. 59, 1257-1265, 2012.
doi:10.1109/TIE.2011.2158038

2. Chen, J.-X., J. Shi, Z.-H. Bao, and Q. Xue, "Tunable and switchable bandpass filters using slot-line resonators," Progress In Electromagnetics Research, Vol. 111, 25-41, 2011.
doi:10.2528/PIER10100808

3. Saeedi, S., J. Lee, and H. H. Sigmarsson, "Novel coupling matrix synthesis for single-layer substrateintegrated evanescent-mode cavity tunable bandstop filter design," IEEE Trans. Microw. Theory Techn., Vol. 63, 3929-3938, 2015.
doi:10.1109/TMTT.2015.2490075

4. Jeong, S. and J. Lee, "Frequency- and bandwidth-tunable bandstop filter containing variable coupling between transmission line and resonator," IEEE Trans. Microw. Theory Techn., No. 99, 1-11, 2017.

5. Guyette, A. C., E. J. Naglich, and S. Shin, "RF-power-activated and signal-tracking tunable bandstop filters," IEEE Trans. Microw. Theory Techn., Vol. 65, 1534-1544, 2017.
doi:10.1109/TMTT.2016.2645569

6. Esmaeili, M. and J. Bornemann, "Novel tunable bandstop resonators in SIW technology and their application to a dual-bandstop filter with one tunable stopband," IEEE Microw. Compon. Lett., Vol. 27, 40-42, 2017.
doi:10.1109/LMWC.2016.2630007

7. Wu, D., N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, "Terahertz plasmonic high pass filter," Appl. Phys. Lett., Vol. 83, 201-203, 2003.
doi:10.1063/1.1591083

8. Cunningham, J., C. Wood, A. G. Davies, I. Hunter, H. E. Linfield, and E. H. Beere, "Terahertz frequency range band-stop filters," Appl. Phys. Lett., Vol. 86, 213503, 2005.
doi:10.1063/1.1938255

9. Lu, M., W. Li, and E. R. Brown, "Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures," Opt. Lett., Vol. 36, 1071-1073, 2011.
doi:10.1364/OL.36.001071

10. Lee, E. S., S.-G. Lee, C.-S. Kee, and T.-I. Jeon, "Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides," Opt. Exp., Vol. 19, 14852-14859, 2011.
doi:10.1364/OE.19.014852

11. Perruisseau-Carrier, J. and A. Alvarez-Melcon, "Graphene-based plasmonic tunable low-pass filters in the terahertz band," IEEE Trans. Nanotechnol., Vol. 13, 1145-1153, 2014.

12. Yao, Y., X. Cheng, S.-W. Qu, J. Yu, and X. Chen, "Graphene-metal based tunable band-pass filters in the terahertz band," IET Microw. Antennas Propag., Vol. 10, 1570-1575, 2016.
doi:10.1049/iet-map.2016.0335

13. Pozar, D. M., Microwave Engineering, 3rd Ed., Publishing House of Electronics Industry, 2006.

14. Hanson, G. W., "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys., Vol. 103, 064302, 2008.
doi:10.1063/1.2891452