Vol. 64
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-01-29
A Matching-Pursuit Based Approach for Detecting and Imaging Breast Cancer Tumor
By
Progress In Electromagnetics Research M, Vol. 64, 65-76, 2018
Abstract
In this study, the scattering map of the breast is reconstructed by applying the matching-pursuit algorithm (MPA) to the simulation data obtained by the monostatic inverse synthetic aperture radar (ISAR) principle, and the locations of the tumors are determined by considering the peaks on the scattering map. The MPA iteratively searches the true solution by assuming every discrete point in the solution space to be a scattering center by dividing the imaging region onto a discrete grid. In order to obtain images with better resolution, the fine granularity of the grid for accurate solutions is provided at the expense of increased processing times. First, our approach based on MPA is tested on simulated data generated by MATLAB for breast tumor detection and imaging. Perfect reconstruction for the locations of the hypothetical breast tumor points is attained. Then, a full-wave electromagnetic simulation software named CST Microwave Studio (CST MWS) is used to generate backscattered electric field data from a constructed scenario in which a tumor is located in a breast model. Next, we use the collected data from the defined scenarios as an input to our algorithm. Resultant images provide successful detection and imaging of the tumor region within the breast model. The accuracy of the MATLAB and the CST MWS simulation results demonstrate the availability of our MPA-based focusing algorithm to be used effectively in medical imaging.
Citation
Mustafa Berkan Bicer, Ali Akdagli, and Caner Ozdemir, "A Matching-Pursuit Based Approach for Detecting and Imaging Breast Cancer Tumor," Progress In Electromagnetics Research M, Vol. 64, 65-76, 2018.
doi:10.2528/PIERM17101205
References

1. Bicer, M. B., A. Akdagli, and C. Ozdemir, "Breast cancer detection using inverse radon transform with microwave image technique," 2015 23th Signal Processing and Communications Applications Conference (SIU), 2182-2185, 2015.
doi:10.1109/SIU.2015.7130306

2. Nass, S. J., I. C. Henderson, and J. C. Lashof, Mammography and Beyond: Developing Technologies for the Early Detection of Breast Cancer, Vol. 4, No. 3, National Academy Press, 2002.

3. Kuhl, C. K., et al. "Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer," J. Clin. Oncol., Vol. 23, No. 33, 8469-8476, Nov. 2005.
doi:10.1200/JCO.2004.00.4960

4. Heywang-Köbrunner, S. H., A. Hacker, and S. Sedlacek, "Advantages and disadvantages of mammography screening," Breast Care, Vol. 6, No. 3, 199-207, Jun. 2011.
doi:10.1159/000329005

5. Orel, S. G. and M. D. Schnall, "MR imaging of the breast for the detection, diagnosis, and staging of breast cancer," Radiology, Vol. 220, No. 1, 13-30, Jul. 2001.
doi:10.1148/radiology.220.1.r01jl3113

6. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, No. 20, 6093, 2007.
doi:10.1088/0031-9155/52/20/002

7. Surowiec, A. J., S. S. Stuchly, J. R. Barr, and A. Swarup, "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Transactions on Biomedical Engineering, Vol. 35, No. 4, 257-263, 1988.
doi:10.1109/10.1374

8. Lim, H. B., N. T. T. Nhung, E.-P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-Multiply-and-Sum image reconstruction algorithm," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 6, 1697-1704, 2008.
doi:10.1109/TBME.2008.919716

9. Ortega-Palacios, R., L. Leija, A. Vera, and M. F. J. Cepeda, "Measurement of breast-tumor phantom dielectric properties for microwave breast cancer treatment evaluation," Program and Abstract Book - 2010 7th International Conference on Electrical Engineering, Computing Science and Automatic Control, 216-219, 2010.

10. Li, X., E. J. Bond, B. D. Van Veen, and S. C. Hagness, "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas Propag. Mag., Vol. 47, No. 1, 19-34, 2005.
doi:10.1109/MAP.2005.1436217

11. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stoica, "Multistatic adaptive microwave imaging for early breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 53, No. 8, 1647-1657, 2006.
doi:10.1109/TBME.2006.878058

12. Fear, E. C., P. M. Meaney, and M. Stuchly, "Microwaves for breast cancer detection," IEEE Potentials, Vol. 22, No. 1, 12, 2003.
doi:10.1109/MP.2003.1180933

13. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, No. 8, 812-822, 2002.
doi:10.1109/TBME.2002.800759

14. Winters, D. W., J. D. Shea, P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions," IEEE Transactions on Medical Imaging, Vol. 28, No. 7, 969-981, 2009.
doi:10.1109/TMI.2008.2008959

15. Irishina, N., M. Moscoso, and O. Dorn, "Microwave imaging for early breast cancer detection using a shape-based strategy," IEEE Trans. Biomed. Eng., Vol. 56, No. 4, 1143-1153, 2009.
doi:10.1109/TBME.2009.2012398

16. Meaney, P. M., M. W. Fanning, T. Zhou, A. Golnabi, S. D. Geimer, and K. D. Paulsen, "Clinical microwave breast imaging - 2D results and the evolution to 3D," Proceedings of the 2009 International Conference on Electromagnetics in Advanced Applications, ICEAA'09, 881-884, 2009.
doi:10.1109/ICEAA.2009.5297356

17. Kurrant, D. J., E. C. Fear, and D. T. Westwick, "Tumor response estimation in radar-based microwave breast cancer detection," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2801-2811, 2008.
doi:10.1109/TBME.2008.921164

18. Davis, S. K., B. D. Van Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Trans. Biomed. Eng., Vol. 55, No. 1, 237-246, 2008.
doi:10.1109/TBME.2007.900564

19. Yun, X., E. C. Fear, and R. H. Johnston, "Compact antenna for radar-based breast cancer detection," IEEE Trans. Antennas Propag., Vol. 53, No. 8, 2374-2380, 2005.
doi:10.1109/TAP.2005.852308

20. Klemm, M., I. Craddock, J. Leendertz, A. Preece, and R. Benjamin, "Experimental and clinical results of breast cancer detection using UWB microwave radar," 2008 IEEE Antennas and Propagation Society International Symposium, No. 1, 1-4, 2008.

21. Flores-Tapia, D., O. Maizlish, C. Alabaster, and S. Pistorius, "Microwave radar imaging of inhomogeneous breast phantoms using circular holography," 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), 86-89, 2012.
doi:10.1109/ISBI.2012.6235490

22. Smith, D., B. Livingstone, M. Elsdon, H. Zheng, V. Schejbal, and O. Yurduseven, "The development of indirect microwave holography for measurement and imaging applications," 2015 IEEE 15th Mediterranean Microwave Symposium (MMS), 1-4, 2015.

23. Cheng, G., Y. Zhu, and J. Grzesik, "3-D microwave imaging for breast cancer," 2012 6th European Conference on Antennas and Propagation (EUCAP), 3672-3676, 2011.

24. Pastorino, M., "Hybrid reconstruction techniques for microwave imaging systems," 2010 IEEE International Conference on Imaging Systems and Techniques, 198-203, 2010.
doi:10.1109/IST.2010.5548474

25. Ünal, I., B. Türetken, and Y. Çotur, "Microwave imaging of breast cancer tumor inside voxel-based breast phantom using conformal antennas," 2014 31th URSI General Assembly and Scientific Symposium, URSI GASS 2014, 1-4, 2014.

26. Mallat, S. G. and Z. Zhang, "Matching pursuits with time-frequency dictionaries," IEEE Transactions on Signal Processing, Vol. 41, No. 12, 3397-3415, 1993.
doi:10.1109/78.258082

27. Franaszczuk, P. J., G. K. Bergey, P. J. Durka, and H. M. Eisenberg, "Time-frequency analysis using the matching pursuit algorithm applied to seizures originating from the mesial temporal lobe," Electroencephalogr. Clin. Neurophysiol., Vol. 106, No. 6, 513-521, Jun. 1998.
doi:10.1016/S0013-4694(98)00024-8

28. Tropp, J. A. and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Transactions on Information Theory, Vol. 53, No. 12, 4655-4666, 2007.
doi:10.1109/TIT.2007.909108

29. La, C. and M. N. Do, "Tree-based orthogonal matching pursuit algorithm for signal reconstruction," 2006 International Conference on Image Processing, 1277-1280, 2006.
doi:10.1109/ICIP.2006.312578

30. Do, T. T., L. Gan, N. Nguyen, and T. D. Tran, "Sparsity adaptive matching pursuit algorithm for practical compressed sensing," 2008 42nd Asilomar Conference on Signals, Systems and Computers, 581-587, 2008.
doi:10.1109/ACSSC.2008.5074472

31. Pati, Y. C., R. Rezaiifar, and P. S. Krishnaprasad, "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition," Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, Vol. 1, 40-44, 1993.
doi:10.1109/ACSSC.1993.342465

32. Buhlmann, P., "Boosting for high-dimensional linear models," Ann. Stat., Vol. 34, No. 2, 559-583, 2006.
doi:10.1214/009053606000000092

33. Yoshida, H., R. M. Nishikawa, M. L. Giger, and K. Doi, "Signal/background separation by wavelet packets for detection of microcalcifications in mammograms," Proc SPIE, Vol. 2825, 2825-2827, 1996.

34. Moll, J., J. B. Harley, and V. Krozer, "Data-driven matched field processing for radar-based microwave breast cancer detection," 2015 9th European Conference on Antennas and Propagation (EuCAP), 1-4, 2015.

35. Ozdemir, C., Inverse Synthetic Aperture Radar Imaging, Wiley & Sons, Inc., 2012.
doi:10.1002/9781118178072

36. Su, T., C. Ozdemir, and H. Ling, "On extracting the radiation center representation of antenna radiation patterns on a complex platform," Microw. Opt. Technol. Lett., Vol. 26, No. 1, 4-7, 2000.
doi:10.1002/(SICI)1098-2760(20000705)26:1<4::AID-MOP2>3.0.CO;2-2

37. CST Microwave Studio, Computer Simulation Technology GmbH.
doi:10.1002/(SICI)1098-2760(20000705)26:1<4::AID-MOP2>3.0.CO;2-2