Vol. 65
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-03-02
Novel Adaptive Buried Nonmetallic Pipe Crack Detection Algorithm for Ground Penetrating Radar
By
Progress In Electromagnetics Research M, Vol. 65, 79-90, 2018
Abstract
Ground penetrating radar (GPR) may be used to detect cracks in a buried pipe. Using GPR, there are only a few techniques, such as statistical approach robust principal component analysis (RPCA). to detect cracks in buried objects. Buried nonmetallic pipe crack detection is an important application for GPR to analyze the structural health of underground pipelines. The strength of a reflected signal may be feeble from a cracked location as compared to position with respect to that from other positions of the pipe. Currently, crack detection is a challenging task, especially when the buried pipe is nonmetallic, and soil moisture varies. In this paper, the problem of crack detection in a PVC pipe using GPR is attempted. It is a challenge to detect small sized cracks in an underground PVC pipe because the GPR image is flooded with correlated background signal or clutter, and the image patterns are typically irregularly distributed. In order to efficiently detect the crack in a buried PVC pipe, a novel adaptive crack detection algorithm has been developed with the help of covariance of real GPR data and covariance of normal distributed synthetic Gaussian data. Results are evaluated and validated to show the effectiveness of crack detection algorithm.
Citation
Prabhat Sharma, Bambam Kumar, and Dharmendra Singh, "Novel Adaptive Buried Nonmetallic Pipe Crack Detection Algorithm for Ground Penetrating Radar," Progress In Electromagnetics Research M, Vol. 65, 79-90, 2018.
doi:10.2528/PIERM17101002
References

1. Zhang, H., S. Ouyang, G. Wang, S. Wu, and F. Zhang, "Dielectric spectrum feature vector extraction algorithm of ground penetrating radar signal in frequency bands," IEEE Geoscience and Remote Sensing Letters, Vol. 12, 958-962, 2015.
doi:10.1109/LGRS.2014.2369523

2. Solimene, R., A. Cuccaro, A. Dell’Aversano, I. Catapano, and F. Soldovieri, "Background removal methods in GPR prospecting," 2013 European IEEE Radar Conference (EuRAD), 85-88, 2013.

3. Giannakis, I., S. Xu, P. Aubry, A. Yarovoy, and J. Sala, "Signal processing for landmine detection using ground penetrating radar," IEEE Geoscience and Remote Sensing Symposium (IGARSS), 7442-7445, 2016.

4. Solimene, R., A. Cuccaro, A. Dell’Aversano, I. Catapano, and F. Soldovieri, "Ground clutter removal in GPR surveys," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7, 792-798, 2014.
doi:10.1109/JSTARS.2013.2287016

5. Sharma, P., B. Kumar, D. Singh, and S. P. Gaba, "Non-metallic pipe detection using SF-GPR: A new approach using neural network," IEEE Geoscience and Remote Sensing Symposium (IGARSS), 6609-6612, 2016.

6. Sharma, P., S. P. Gaba, and D. Singh, "Study of background subtraction for ground penetrating radar," IEEE Conferences in Recent Advances in Electronics & Computer Engineering (RAECE), 101-105, 2015.

7. Tivive, F. H. C., A. Bouzerdoum, and M. G. Amin, "A subspace projection approach for wall clutter mitigation in through-the-wall radar imaging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, 2108-2122, 2015.
doi:10.1109/TGRS.2014.2355211

8. Solimene, R. and A. Cuccaro, "Front wall clutter rejection methods in TWI," IEEE Geoscience and Remote Sensing Letters, Vol. 11, 1158-1162, 2014.
doi:10.1109/LGRS.2013.2288491

9. Zhang, Y., A. S. Venkatachalam, D. Huston, and T. Xia, "Advanced signal processing method for ground penetrating radar feature detection and enhancement," Proc. SPIE, Vol. 9063, 906318, 2014.
doi:10.1117/12.2046338

10. Song, C., Q. Lu, C. Liu, and Y. Gao, "Random noise de-noising and direct wave eliminating in ground penetrating radar signal using SVD method," IEEE 16th International Conference of Ground Penetrating Radar (GPR), 1-5, 2016.

11. Zhang, Y., A. S. Venkatachalam, T. Xia, Y. Xie, and G. Wang, "Data analysis technique to leverage ground penetrating radar ballast inspection performance," IEEE Radar Conference, 463-468, 2014.

12. Liu, X., M. Serhir, A. Kameni, M. Lambert, and L. Pichon, "Buried targets detection from synthetic and measured B-scan ground penetrating radar data," IEEE 11th European Conference on Antennas and Propagation (EUCAP), 1726-1730, 2017.

13. Temlioglu, E. and I. Erer, "Clutter removal in ground-penetrating radar images using morphological component analysis," IEEE Geoscience and Remote Sensing Letters, Vol. 13, 1802-1806, 2016.
doi:10.1109/LGRS.2016.2612582

14. Zhang, Y. and X. Tian, "Extracting sparse crack features from correlated background in ground penetrating radar concrete imaging using robust principal component analysis technique," Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2016, Vol. 9804, 2016.

15. Gunatilaka, A. H. and A. B. Brian, "Subspace decomposition technique to improve GPR imaging of antipersonnel mines," Detection and Remediation Technologies for Mines and Minelike Targets V, Vol. 4038, 1008-1019, International Society for Optics and Photonics, 2000.
doi:10.1117/12.396186

16. Solimene, R., A. D’Alterio, G. Gennarelli, and F. Soldovieri, "Estimation of soil permittivity in presence of antenna-soil interactions," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 7, 805-812, 2014.
doi:10.1109/JSTARS.2013.2268576

17. Agarwal, S. and D. Singh, "An adaptive statistical approach for non-destructive underline crack detection of ceramic tiles using millimeter wave imaging radar for industrial application," IEEE Sensors Journal, Vol. 15, 7036-7044, 2015.
doi:10.1109/JSEN.2015.2469157

18. Sharma, P., B. Kumar, D. Singh, and S. P. Gaba, "Critical analysis of background subtraction techniques on real GPR data," Defence Science Journal, Vol. 67, 559-571, 2017.
doi:10.14429/dsj.67.10048

19. David, J. D., Ground Penetrating Radar, 2nd Ed., The Institution of Electrical Engineers, 2004, ISBN 978-86341-360-5.

20. Gao, S., Y. Zhong, and W. Li, "Random weighting method for multisensor data fusion," IEEE Sensors Journal, Vol. 11, 1955-1961, 2011.
doi:10.1109/JSEN.2011.2107896

21. Thomas, D. B., W. Luk, P. H. W. Leong, and J. D. Villasenor, "Gaussian random number generators," ACM Comput. Surv. 39, 4, Article 11, October 2007, http://doi.acm.org/10.1145/1287620.1287622.