Vol. 72
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-12-06
A Single-Layer and Compact Circularly Polarized Wideband Slot Antenna Based on ``Bent Feed''
By
Progress In Electromagnetics Research Letters, Vol. 72, 39-44, 2018
Abstract
This communication presents a novel compact and wideband circularly polarized (CP) slot antenna fed by microstrip feedline. The proposed antenna consists of a corner-truncated square-ring slot patch and a novel bent strip. The CP radiation is formed by using the bent strip to excite CP resonance modes. By intruding several open stubs to the corners of the square-ring slot patch, the impedance matching and axial ratio (AR) bandwidth are improved. The measured results show that the proposed antenna has the advantage of wideband characteristics in terms of an impedance bandwidth of 90.59% (3.2-8.5 GHz) and 3-dB axial ratio bandwidth of 84.2% (3.3-8.1 GHz). The principle as well as simulated and measured results of the proposed antenna is revealed.
Citation
Zhe Wu, Gen Ming Wei, Xi Li, and Lin Yang, "A Single-Layer and Compact Circularly Polarized Wideband Slot Antenna Based on ``Bent Feed''," Progress In Electromagnetics Research Letters, Vol. 72, 39-44, 2018.
doi:10.2528/PIERL17093001
References

1. Pazoki, R., A. Kiaee, P. Naseri, H. Moghadas, H. Oraizi, and P. Mousavi, "Circularly polarized monopole L-shaped slot antenna with enhanced axial-ratio bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 2016.
doi:10.1109/LAWP.2015.2492918

2. Nosrati, M. and N. Tavassolian, "Miniaturized circularly polarized square slot antenna with enhanced axial-ratio bandwidth using an antipodal Y-strip," IEEE Antennas and Wireless Propagation Letters, 2605099, 2016.

3. Sze, J.-Y. and W.-H. Chen, "Axial-ratio-bandwidth enhancement of a microstrip-line-fed circularly polarized annular-ring slot antenna," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, July 2011.
doi:10.1109/TAP.2011.2152314

4. Jan, J.-Y., C.-Y. Pan, K.-Y. Chiu, and H.-M. Chen, "Broadband CPW-fed circularly-polarized slot antenna with an open slot," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, March 2013.
doi:10.1109/TAP.2012.2231926

5. Yeung, S. H., K. F. Man, and W. S. Chan, "A bandwidth improved circular polarized slot antennausing a slot composed of multiple circular sectors," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 8, August 2011.
doi:10.1109/TAP.2011.2158953

6. Zhang, H., Y.-C. Jiao, L. Lu, and C. Zhang, "Broadband circularly polarized square-ring-loaded slot antenna with flat gains," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2017.

7. Karamzadeh, S., V. Rafii, M. Kartal, and H. Saygin, "Compact UWB CP square slot antenna with two corners connected by a strip line," Electronics Letters, Vol. 52, No. 1, 10-12, 2016.
doi:10.1049/el.2015.2817

8. Ellis, M. S., Z. Zhao, J. Wu, X. Ding, Z. Nie, and Q.-H. Liu, "A novel simple and compact microstrip-fed circularly polarized wide slot antenna with wide axial ratiobandwidth for C-band applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, April 2016.
doi:10.1109/TAP.2016.2526076

9. Pourahmadazar, J., Ch. Ghobadi, J. Nourinia, N. Felegari, and H. Shirzad, "Broadband CPW-fed circularly polarized square slot antenna with inverted-L strips for UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 2011.

10. Pan, Y. and K. W. Leung, "Wideband circularly polarized trapezoidal dielectric resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 2010.