Vol. 63
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-01-13
Random Radiation Source Optimization Method for Microwave Staring Correlated Imaging Based on Temporal-Spatial Relative Distribution Entropy
By
Progress In Electromagnetics Research M, Vol. 63, 195-206, 2018
Abstract
Microwave Staring Correlated Imaging (MSCI) is a high-resolution radar imaging modality, whose resolution is mainly determined by the randomness of radiation source. To optimize the design of random radiation source, a novel concept of temporal-spatial relative distribution entropy (TSRDE) is proposed to describe the temporal-spatial stochastic characteristics of radiation source. The TSRDE can be utilized as the optimization criterion to design the array con guration and signal parameters by means of optimization algorithms. In this paper the genetic algorithm is applied to search for the best design. Numerical simulations are performed and the results show that the TSRDE is an effective method to characterize the randomness of radiation source, and the source parameters optimized by this method can dramatically improve the imaging resolution.
Citation
Qingquan Meng, Tingting Qian, Bo Yuan, and Dongjin Wang, "Random Radiation Source Optimization Method for Microwave Staring Correlated Imaging Based on Temporal-Spatial Relative Distribution Entropy," Progress In Electromagnetics Research M, Vol. 63, 195-206, 2018.
doi:10.2528/PIERM17092902
References

1. Ausherman, D. A., A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, "Development in radar imaging," IEEE Trans. Aerospace and Electronic Systems, Vol. 20, 363-397, 1984.
doi:10.1109/TAES.1984.4502060

2. David, S. S., "Remote sensing with imaging radar: A review," Geoforum, Vol. 1, 61-74, 1970.
doi:10.1016/0016-7185(70)90029-1

3. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, 481-494, 2004.
doi:10.1163/156939304774113089

4. Donelli, M., I. Craddock, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2012.
doi:10.2528/PIERM11040903

5. Rocca, P., M. Donelli, G. L. Gragnani, and A. Massa, "Iterative multi-resolution retrieval of non-measurable equivalent currents for the imaging of dielectric objects," Inverse Problems, Vol. 25, 1-15, 2009.

6. Franceschini, G., M. Donelli, R. Azaro, and A. Massa, "Inversion of phaseless total field data using a two-step strategy based on the iterative multiscaling approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, 3527-3539, 2006.
doi:10.1109/TGRS.2006.881753

7. Guo, Y., X. He, and D. Wang, "A novel super-resolution imaging method based on stochastic radiation radar array," Measurement Science and Technology, Vol. 24, No. 7, 31-36, 2013.
doi:10.1088/0957-0233/24/7/074013

8. He, X., B. Liu, and D. Wang, "A novel approach of high spatial-resolution microwave staring correlated imaging," Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar, 75-78, Tsukuba, Japan, September 2013.

9. Ma, Y., X. He, and D. Wang, "Microwave staring correlated imaging and resolution analysis," Proceedings of 2013 Geo-Informatics in Resource Management and Sustainable Ecosystem International Symposium, 75-78, Wuhan, China, November 2013.

10. Li, D., X. Li, Y. Cheng, Y. Qin, and H. Wang, "Radar coincidence imaging: An instantaneous imaging technique with stochastic signals," IEEE Transactions on Geoscience Remote Sensing, Vol. 52, No. 4, 2261-2271, 2014.
doi:10.1109/TGRS.2013.2258929

11. Zhu, S., A. Zhang, Z. Xu, and X. Dong, "Radar coincidence imaging with random microwave source," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1239-1242, 2015.
doi:10.1109/LAWP.2015.2399977

12. Li, D., X. Li, and Y. Cheng, "Three dimensional radar coincidence imaging," Progress In Electromagnetics Research M, Vol. 33, 223-238, 2013.

13. Zhou, X., H. Wang, Y. Cheng, Y. Qin, and H. Chen, "Radar coincidence imaging for off-grid target using frequency hopping waveforms," International Journal of Antennas and Propagation, Vol. 2016, 1-16, 2016.

14. Zha, G., H. Wang, and Z. Yang, "Effect analysis and design on array geometry for coincidence imaging radar based on effective rank theory," Proceedings of 2015 ISPRS International Conference on Computer Vision in Remote Sensing, 1-8, Xiamen, China, April 2015.

15. Guo, Y., D. Wang, and C. Tian, "Research on sensing matrix characteristics in microwave staring correlated imaging based on compressed sensing," Proceedings of 2014 IEEE International Conference on Imaging Systems and Techniques, 1-6, Island of Santorini, Greece, October 2014.

16. Bell, M. R., "Information theory and radar waveform design," IEEE Trans. on Information Theory, Vol. 9, 1578-1597, 1993.
doi:10.1109/18.259642

17. Luo, Y., Z. Zhao, and C. Luo, "MIMO-OTHR waveform optimization based on the mutual information theory," Progress In Electromagnetics Research M, Vol. 46, 69-80, 2016.
doi:10.2528/PIERM15102903

18. Tang, B., J. Tang, and Y. Peng, "MIMO radar waveform design in colored noise based on information theory," IEEE Transactions on Signal Processing, Vol. 58, No. 9, 4684-4697, 2010.
doi:10.1109/TSP.2010.2050885

19. Maherin, I. and Q. Liang, "Radar sensor network for target detection using Chernoff information and relative entropy," Physical Communication, Vol. 13, 244-252, 2014.
doi:10.1016/j.phycom.2014.01.003

20. Liu, W., Y. Lu, and M. Lesturgie, "Evolutionary algorithms based sparse spectrum waveform optimization," Principles of Waveform Diversity and Design, Vol. 2011, 152-162, 2011.

21. Mishra, A. and A. Shukla, "Mathematical analysis of schema survival for genetic algorithms having dual mutation," Soft Computing, Vol. 1, 1-9, 2011.

22. Boudamouz, B., P. Millot, and C. Pichot, "MIMO antenna design with genetic algorithm for TTW radar imaging," Proceedings of 2012 EuRAD 9th European Radar Conference, 150-153, Amsterdam, the Netherlands, October 2012.

23. Lellouch, G. and A. Mishra, "Multi-carrier based radar signal optimization using genetic algorithm," Advances in Intelligent Systems and Computing, Vol. 258, 525-534, 2014.
doi:10.1007/978-81-322-1771-8_46

24. Liu, B. and D. Wang, "Orthogonal radiation field construction for microwave staring correlated imaging," Progress In Electromagnetics Research M, Vol. 57, 139-149, 2017.
doi:10.2528/PIERM17042003

25. Cerf, R., "The quasispecies regime for the simple genetic algorithm with roulette wheel selection," Advances in Applied Probability, Vol. 49, No. 3, 903-926, 2017.
doi:10.1017/apr.2017.26

26. Rubae, T., P. M. Meaney, P. Meincke, and K. D. Paulsen, "Nonlinear microwave imaging for breast-cancer screening using Gauss-Newton’s method and the CGLS inversion algorithm," IEEE Transactions on Antennas and Propagation, Vol. 55, 2320-2331, 2007.