Vol. 64
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-01-19
Generation of Ultrahigh Speed, Ultrashort Flat-Top Picosecond Electrical Pulses by Laser Pulse Shaping and Ultrafast Electro-Optics Sampling
By
Progress In Electromagnetics Research M, Vol. 64, 35-41, 2018
Abstract
A novel method is proposed and demonstrated to generate ultrahigh speed, ultrashort flat-top picosecond electrical pulses by combining laser pulse shaping with ultrafast electro-optics sampling technique. Starting with high repetition rate laser pulses, a sequence of birefringent crystals is employed to produce optical pulses with flat-top temporal profile and tunable duration. Subsequent measurement of optical waveforms by an ultrafast photodetector yields high-speed, ultrashort flat-top picosecond electrical pulses. By using two sets of YVO4 crystals for laser pulse shaping, we report on the generation of 704 MHz, 48 picoseconds and 704 MHz, 88 picoseconds flat-top electrical pulses with 16-30 picoseconds rise or fall time. To the best of our knowledge, these results are better than or comparable with the best performance using step recovery diodes and the direct electro-optics sampling technique.
Citation
Michael G. Zhao, Chen Xu, and Michiko Minty, "Generation of Ultrahigh Speed, Ultrashort Flat-Top Picosecond Electrical Pulses by Laser Pulse Shaping and Ultrafast Electro-Optics Sampling," Progress In Electromagnetics Research M, Vol. 64, 35-41, 2018.
doi:10.2528/PIERM17091903
References

1. "Pulse and waveform generation with step recovery diodes," Application Note, AN 918, Hewlett-Packard, Palo Alto, October 1984, Available at Hewlett-Packard HPRFhelp.
doi:10.1109/LMWC.2017.2690880

2. Zou, L., S. Gupta, and C. Caloz, "A simple picosecond pulse generator based on a pair of step recovery diodes," IEEE Microwave and Wireless Components Letters, Vol. 27, 467, 2017.
doi:10.1364/OE.22.006099

3. Mangold, M., C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, "Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser," Optics Express, Vol. 22, 6099, 2014.
doi:10.1364/OE.22.006099

4. "Link to 45 GHz detector,", https://www.newport.com/f/40-ghz-and-45-ghz-photodetectors.
doi:10.1364/OE.22.006099

5. "The pulse repetition rate should be less than half the bandwidth of the sampling circuit, due to the rise and fall times,".

6. Data sheet from Alnair labs, http://www.alnair-labs.com/product-EPG-210.php.
doi:10.1364/AO.46.008488

7. Zhou, S., D. Ouzounov, H. Li, I. Bazarov, B. Dunham, C. Sinclair, and F. W. Wise, "Efficient temporal shaping of ultrashort pulses with birefringent crystals," Applied Optics, Vol. 46, 8488, 2007.
doi:10.1103/PhysRevSTAB.12.033501

8. Sharma, A. K., T. Tsang, and T. Rao, "Theoretical and experimental study of passive spatiotemporal shaping of picosecond laser pulses," Physical Review Special Topics - Accelerators & Beams, Vol. 12, 033501, 2009.
doi:10.1364/AO.37.005302

9. Siders, C. W., J. L. W. Siders, A. J. Taylor, S.-G. Park, and A. M. Weiner, "Efficient high-energy pulse-train generation using a 2n-pulse Michelson interferometer," Applied Optics, Vol. 37, 5302, 1998.
doi:10.1063/1.93306

10. Grischkowsky, D. and A. C. Balant, "Optical pulse compression based on enhanced frequency chirping," Applied Physics Letters, Vol. 41, 1, 1982.