Vol. 79
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-11-13
An Experimental 13.56 MHz Radio Frequency Heating System for Efficient Thermal Pretreatment of Wastewater Sludge
By
Progress In Electromagnetics Research B, Vol. 79, 83-101, 2017
Abstract
This paper describes the design of an experimental radio frequency (RF) heating system for efficiently heating waste activated sludge (WAS), a byproduct of wastewater treatment plants. Thermal pretreatment is used to increase the bio-gas yield from subsequent anaerobic processes which use WAS. The RF heating system operates at a frequency of 13.56 MHz and the frequency was selected based on a study of the electrical properties of WAS. RF heating has advantages over microwave heating including access to very efficient RF generators, and RF applicators can be designed to provide uniform heating through large load volumes, overcoming limitations of microwave heating which has a shallow penetration depth in the load. Experimental results for the RF heating system show a dc to RF power conversion efficiency of 85% and a power transfer efficiency from the amplifier to load of more than 86% over a temperature range from 20˚C to 120˚C.
Citation
Md. Saimoom Ferdous, Ehssan Hosseini Koupaie, Cigdem Eskicioglu, and Thomas Johnson, "An Experimental 13.56 MHz Radio Frequency Heating System for Efficient Thermal Pretreatment of Wastewater Sludge," Progress In Electromagnetics Research B, Vol. 79, 83-101, 2017.
doi:10.2528/PIERB17091409
References

1. Braber, K., "Anaerobic digestion of municipal solid waste: A modern waste disposal option on the verge of breakthrough," Biomass and Bioenergy, Vol. 9, No. 1, 365-376, 1995.
doi:10.1016/0961-9534(95)00103-4

2. Cakir, F. and M. Stenstrom, "Greenhouse gas production: A comparison between aerobic and anaerobic wastewater treatment technology," Water Research, Vol. 39, No. 17, 4197-4203, 2005.
doi:10.1016/j.watres.2005.07.042

3. Appels, L., J. Baeyens, J. Degrve, and R. Dewil, "Principles and potential of the anaerobic digestion of waste-activated sludge," Progress in Energy and Combustion Science, Vol. 34, No. 6, 755-781, 2008.
doi:10.1016/j.pecs.2008.06.002

4. Vlyssides, A. and P. Karlis, "Thermal-alkaline solubilization of waste activated sludge as a pretreatment stage for anaerobic digestion," Bioresource Technology, Vol. 91, No. 2, 201-206, 2004.
doi:10.1016/S0960-8524(03)00176-7

5. Carballa, M., F. Omil, J. M. Lema, M. Llompart, C. Garcıa-Jares, I. Rodrıguez, M. Gomez, and T. Ternes, "Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant," Water Research, Vol. 38, No. 12, 2918-2926, 2004.
doi:10.1016/j.watres.2004.03.029

6. Oller, I., S. Malato, and J. Sanchez-Perez, "Combination of advanced oxidation processes and biological treatments for wastewater decontaminationa review," Science of the Total Environment, Vol. 409, No. 20, 4141-4166, 2011.
doi:10.1016/j.scitotenv.2010.08.061

7. Wei, Y., R. T. V. Houten, A. R. Borger, D. H. Eikelboom, and Y. Fan, "Minimization of excess sludge production for biological wastewater treatment," Water Research, Vol. 37, No. 18, 4453-4467, 2003.
doi:10.1016/S0043-1354(03)00441-X

8. Bougrier, C., C. Albasi, J.-P. Delgenes, and H. Carrere, "Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability," Chemical Engineering and Processing: Process Intensification, Vol. 45, No. 8, 711-718, 2006.
doi:10.1016/j.cep.2006.02.005

9. Nah, I. W., Y. W. Kang, K.-Y. Hwang, and W.-K. Song, "Mechanical pretreatment of waste activated sludge for anaerobic digestion process," Water Research, Vol. 34, No. 8, 2362-2368, 2000.
doi:10.1016/S0043-1354(99)00361-9

10. Neyens, E. and J. Baeyens, "A review of thermal sludge pre-treatment processes to improve dewaterability," Journal of Hazardous Materials, Vol. 98, No. 1, 51-67, 2003.
doi:10.1016/S0304-3894(02)00320-5

11. Eskicioglu, C., K. Kennedy, and R. Droste, "Enhanced disinfection and methane production from sewage sludge by microwave irradiation," Desalination, Vol. 248, No. 1, 279-285, 2009.
doi:10.1016/j.desal.2008.05.066

12. Koupaie, E. H. and C. Eskicioglu, "Below and above boiling point comparison of microwave irradiation and conductive heating for municipal sludge digestion under identical heating/cooling profiles," Bioresource Technology, Vol. 187, 235-245, 2015.
doi:10.1016/j.biortech.2015.03.113

13. Saha, M., C. Eskicioglu, and J. Marin, "Microwave, ultrasonic and chemo-mechanical pretreatments for enhancing methane potential of pulp mill wastewater treatment sludge," Bioresource Technology, Vol. 102, No. 17, 7815-7826, 2011.
doi:10.1016/j.biortech.2011.06.053

14. Choi, H., S.-W. Jeong, and Y.-J. Chung, "Enhanced anaerobic gas production of waste activated sludge pretreated by pulse power technique," Bioresource Technology, Vol. 97, No. 2, 198-203, 2006.
doi:10.1016/j.biortech.2005.02.023

15. Lee, I.-S., P. Parameswaran, J. M. Alder, and B. E. Rittmann, "Feasibility of focused-pulsed treated waste activated sludge as a supplemental electron donor for denitrification," Water Environment Research, Vol. 82, No. 12, 2316-2324, 2010.
doi:10.2175/106143010X12609736967288

16. Salerno, M. B., H.-S. Lee, P. Parameswaran, and B. E. Rittmann, "Using a pulsed electric field as a pretreatment for improved biosolids digestion and methanogenesis," Water Environment Research, Vol. 81, No. 8, 831-839, 2009.
doi:10.2175/106143009X407366

17. Park, W.-J., J.-H. Ahn, S. Hwang, and C.-K. Lee, "Effect of output power, target temperature, and solid concentration on the solubilization of waste activated sludge using microwave irradiation," Bioresource Technology, Vol. 101, No. 1, s13-s16, Jan. 2010.
doi:10.1016/j.biortech.2009.02.062

18. Solyom, K., R. B. Mato, S. I. Perez-Elvira, and M. J. Cocero, "The in uence of the energy absorbed from microwave pretreatment on biogas production from secondary wastewater sludge," Bioresource Technology, Vol. 102, No. 23, 10 849-10 854, Dec. 2011.
doi:10.1016/j.biortech.2011.09.052

19. Kuglarz, M., D. Karakashev, and I. Angelidaki, "Microwave and thermal pretreatments as methods for increasing the biogas potential of secondary sludge from municipal wastewater treatment plants," Bioresource Technology, Vol. 134, 290-297, 2013.
doi:10.1016/j.biortech.2013.02.001

20. Mehdizadeh, S. N., C. Eskicioglu, J. Bobowski, and T. Johnson, "Conductive heating and microwave hydrolysis under identical heating profiles for advanced anaerobic digestion of municipal sludge," Water Research, Vol. 47, No. 14, 5040-5051, 2013.
doi:10.1016/j.watres.2013.05.055

21. Bennamoun, L., Z. Chen, and M. T. Afzal, "Microwave drying of wastewater sludge: Experimental and modeling study," Drying Technology, Vol. 34, No. 2, 235-243, 2016, [online], available: http://dx.doi.org/10.1080/07373937.2015.1040885.
doi:10.1080/07373937.2015.1040885

22. Li, Z. Y., R. F. Wang, and T. Kudra, "Uniformity issue in microwave drying," Drying Technology, Vol. 29, No. 6, 652-660, 2011.
doi:10.1080/07373937.2010.521963

23. Haque, K. E., "Microwave energy for mineral treatment processes — A brief review," International Journal of Mineral Processing, Vol. 57, No. 1, 1-24, 1999.
doi:10.1016/S0301-7516(99)00009-5

24. Koupaie, E. H., T. Johnson, and C. Eskicioglu, "Advanced anaerobic digestion of municipal sludge using a novel and energy-efficient radio frequency pretreatment system," Water Research, Vol. 118, 70-81, 2017, [online], available: http://www.sciencedirect.com/science/article/pii/S0043135417302798.
doi:10.1016/j.watres.2017.04.017

25. Bobowski, J. S., T. Johnson, and C. Eskicioglu, "Permittivity of waste-activated sludge by an open-ended coaxial line," Progress In Electromagnetics Research Letters, Vol. 29, 139-149, 2012.
doi:10.2528/PIERL11120304

26. Bobowski, J. S. and T. Johnson, "Permittivity measurements of biological samples by an open-ended coaxial line," Progress In Electromagnetics Research B, Vol. 40, 159-183, 2012.
doi:10.2528/PIERB12022906

27. Stogryn, A., "Equations for calculating the dielectric constant of saline water (correspondence)," IEEE Trans. on Microwave Theory and Techniques, Vol. 19, No. 8, 733-736, 1971.
doi:10.1109/TMTT.1971.1127617

28. "Comsol multiphysics modeling software, version 4.3a,", COMSOL Inc..
doi:10.1109/TMTT.1971.1127617