Vol. 71
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-11-13
Genetic Algorithm Optimized Electromagnetic Band Gap Structure for Wide Band Noise Suppression
By
Progress In Electromagnetics Research Letters, Vol. 71, 109-115, 2017
Abstract
Ground bounce noise (GBN) is a major concern in high speed electronic circuits. In this paper a Genetic Algorithm (GA) optimized electromagnetic band gap (EBG) structure is proposed for suppression of the GBN. The unit cell of the structure is comprised of several square patches, each having a dimension of 5 mm x 5 mm. The position of the square patches is optimized using the GA, such that the stopband is maximized. A single unit cell of the optimized structure is fabricated and tested for its stopband characteristics using the vector network analyzer (VNA). The structure is then tested for its signal integrity (SI) using the Agilent ADS software. The single unit cell of the optimized structure provides a wide band gap of 20 GHz with 30 dB isolation and a band gap of 17.4 GHz with 40 dB isolation. The results obtained are compared with the existing results. The optimized structure shows improved performance in terms of stop band gap and signal integrity (SI).
Citation
Bhargav Appasani, Vijay Kumar Verma, Rahul Pelluri, and Nisha Gupta, "Genetic Algorithm Optimized Electromagnetic Band Gap Structure for Wide Band Noise Suppression," Progress In Electromagnetics Research Letters, Vol. 71, 109-115, 2017.
doi:10.2528/PIERL17091204
References

1. Wu, B., B. Li, T. Su, and C.-H. Liang, "Equivalent-circuit analysis and lowpass filter design of split-ring resonator DGS," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 1943-1953, 2006.
doi:10.1163/156939306779322765

2. Fu, Y. Q., Q. R. Zheng, Q. Gao, and G. H. Zhang, "Mutual coupling reduction between large antenna arrays using electromagnetic bandgap (EBG) structures," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 819-825, 2006.
doi:10.1163/156939306776143415

3. Senthinathan, R. and J. Price, "Simultaneous switching noise of CMOS, devices and systems," Springer International, 249, Kluwer, 1994.

4. Abhari, R. and G. V. Eleftheriades, "Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits," IEEE Trans. Microw. Theory Technology, Vol. 51, No. 6, 1629-1639, 2003.
doi:10.1109/TMTT.2003.812555

5. Kwon, J.-H., D.-U. Sim, S.-I. Kwak, and J. G. Yook, "Novel triangular-type electromagnetic bandgap structure for ultra-broadband suppression of simultaneous switching noise," Microw. Opt. Technol. Letters, Vol. 51, 1356-1358, 2006.

6. Wu, T.-L., Y.-H. Lin, T.-K. Wang, C.-C. Wang, and S.-T. Chen, "Electromagnetic bandgap power/ground planes for wideband suppression of ground bounce noise and radiated emission in high-speed circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 9, 2935-2942, 2005.
doi:10.1109/TMTT.2005.854248

7. Xu, X., J. Zhao, and Y. Feng, "Achieving both wideband mitigation of ground bounce noise and good signal integrity by novel period structure," Electronics Letters, Vol. 45, No. 3, 158-159, 2009.
doi:10.1049/el:20092305

8. Rao, P. H. and M. Swaminathan, "A novel compact electromagnetic band gap structure in power plane for wideband noise suppression and low radiation," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 4, 996-1004, 2011.
doi:10.1109/TEMC.2011.2156408

9. Rao, P. H., "Multi-slit electromagnetic band gap power plane for wideband noise suppression," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 1, No. 9, 1421-1427, 2011.
doi:10.1109/TCPMT.2011.2144978

10. Rao, P. H., "Hybrid electromagnetic Band gap power plane for ultra wideband noise suppression," Electronics Letters, Vol. 45, No. 19, 981-982, 2009.
doi:10.1049/el.2009.1554

11. Shi, L.-F., C.-R. Wang, S.-L. Yuan, K.-P. Chen, and S. Gao, "EBG structure with T-shaped slits for suppression of simultaneous switching noise," International Journal of RF and Microwave Computer Aided Engineering, Vol. 25, 419-426, 2015.
doi:10.1002/mmce.20876

12. Appasani, B. and N. Gupta, "A novel wide band-gap structure for improved signal integrity," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 3, 591-596, 2016.
doi:10.1017/S1759078715000823

13. Pani, P., R. K. Nagpal, R. Malik, and N. Gupta, "Design of planar band Gap structures using cuckoo search algorithm for ground noise suppression," Progress In Electromagnetics Research M, Vol. 28, 145-155, 2013.
doi:10.2528/PIERM12121108

14. Pelluri, R. and B. Appasani, "Genetic algorithm optimized X-band absorber using metamaterials," Progress In Electromagnetics Research Letters, Vol. 69, 59-64, 2017.
doi:10.2528/PIERL17051902

15. Mosallaei, H. and K. Sarabandi, "A compact wideband EBG structure utilizing embedded resonant circuits," IEEE Antennas and Wireless Propagation Letters, Vol. 4, No. 1, 5-8, 2005.
doi:10.1109/LAWP.2004.841213

16. Makarov, N., "MOM antenna simulation using MATLAB: RWG basis functions," IEEE Antennas and Propagation Magazine, Vol. 43, No. 5, 100-107, 2001.
doi:10.1109/74.979384