Vol. 61
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-11-02
Improved Performance of Double-T Monopole Antenna for 2.4/5.6 GHz Dual-Band WLAN Operation Using Artificial Magnetic Conductors
By
Progress In Electromagnetics Research M, Vol. 61, 205-213, 2017
Abstract
A novel artificial magnetic conductor (AMC) structure for realizing gain enhancement of a double-T monopole antenna for 2.4/5.6 GHz dual-band WLAN operation is presented. First, an initial AMC unit cell is proposed, and a 2x5 array of this unit cell is placed behind a double-T monopole antenna as a ground plane, then the AMC structure is modified and improved to achieve better performance. Briefly, more than 4 dB gain improvement and other desirable characteristics including suitable radiation patterns and adequate bandwidths are reported from the simulation results of the final designed structure, and the simulation is performed by CST MWS 2014 in any of the mentioned frequencies. Finally, the validity and applicability of this design are demonstrated through experimental results of the fabricated antenna.
Citation
Zahra Chamani, and Sajad Jahanbakht, "Improved Performance of Double-T Monopole Antenna for 2.4/5.6 GHz Dual-Band WLAN Operation Using Artificial Magnetic Conductors," Progress In Electromagnetics Research M, Vol. 61, 205-213, 2017.
doi:10.2528/PIERM17090301
References

1. Balanis, C. A., Antenna Theory Analysis & Design, 3rd Ed., John Wiley and Sons, 2005.

2. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.

3. Mohamed-Hicho, N. M., E. Antonino-Daviu, M. Cabedo-Fabres, and M. Ferrando-Bataller, "A novel low-profile high-gain UHF antenna using high-impedance surfaces," IEEE Antennas and Wireless Propagation Lett., Vol. 14, 1014-1017, 2015.
doi:10.1109/LAWP.2015.2389274

4. Wang, B., C. Huang, W. Luo, and W. Ruan, "Low-profile broadband dual-polarized dipole antenna on AMC reflector for base station," Progress In Electromagnetics Research C, Vol. 74, 171-179, 2017.
doi:10.2528/PIERC17032101

5. Elwi, T. A., A. I. Imran, and Y. Alnaiemy, "A miniaturized lotus shaped microstrip antenna loaded with EBG structures for high gain-bandwidth product applications," Progress In Electromagnetics Research C, Vol. 60, 157-167, 2015.
doi:10.2528/PIERC15101804

6. Muhammad, N., et al. "High gain FSS aperture coupled microstrip patch antenna," Progress In Electromagnetics Research C, Vol. 64, 21-31, 2016.
doi:10.2528/PIERC16022102

7. Sievenpiper, D., L. Zhang, R. F. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001

8. Rexhepi, T. and D. Crouse, "A study of composite substrates for VHF and UHF artificial magnetic conductors and their application to a SATCOM antenna," Progress In Electromagnetics Research C, Vol. 64, 1-9, 2016.
doi:10.2528/PIERC16030409

9. LibiMol, V., et al. "Radar cross section reduction property of high impedance surface on a lossy dielectric," Progress In Electromagnetics Research M, Vol. 46, 19-28, 2016.
doi:10.2528/PIERM15101606

10. Kuo, Y. and K. Wong, "Printed double-T monopole antenna for 2.4/5.2 GHz dual-band WLAN operations," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 9, 2187-2192, 2003.
doi:10.1109/TAP.2003.816391

11. Zhang, L. and T. Dong, "RCS reduction using a miniaturized uni-planar electromagnetic band gap structure for circularly polarized microstrip antenna array," Progress In Electromagnetics Research Letters, Vol. 66, 135-141, 2017.
doi:10.2528/PIERL17011504

12. Meriche, M. A., H. Attia, A. Messai, and T. A. Denidni, "Gain improvement of a wideband monopole antenna with novel artificial magnetic conductor," 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 1-2, IEEE, 2016.

13. El Ghabzouri, M., A. E. Salhi, P. Anacleto, and P. Mendes, "Enhanced low profile, dual-band antenna via novel electromagnetic band gap structure," Progress In Electromagnetics Research C, Vol. 71, 79-89, 2017.
doi:10.2528/PIERC16110904

14. Zheng, J. and S. Fang, "A new method for designing low RCS patch antenna using frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 58, 125-131, 2016.
doi:10.2528/PIERL15122702

15. Yang, W., H. Wang, W. Che, and J. Wang, "A wideband and high-gain edge-fed patch antenna and array using artificial magnetic conductor structures," IEEE Antennas and Wireless Propagation Lett., Vol. 12, 769-772, 2013.
doi:10.1109/LAWP.2013.2270943

16. Majid, H. A., M. K. Abd Rahim, M. R. Hamid, M. F. M. Yusoff, N. A. Murad, N. A. Samsuri, O. B. Ayop, and R. Dewan, "Wideband antenna with reconfigurable band notched using EBG structure," Progress In Electromagnetics Research Letters, Vol. 54, 7-13, 2015.
doi:10.2528/PIERL15032404

17. Ta, S. X. and I. Park, "Design of miniaturized dual-band artificial magnetic conductor with easy control of second/first resonant frequency ratio," Journal of Electromagnetic Engineering and Science, Vol. 13, No. 2, 104-112, Jun. 2013.
doi:10.5515/JKIEES.2013.13.2.104

18. Li, H., Q. Cao, and Y. Wang, "A novel miniaturized frequency selective surface with very stable performance," Progress In Electromagnetics Research C, Vol. 75, 131-138, 2017.
doi:10.2528/PIERC17051603

19. Jaglan, N., B. K. Kanaujia, S. D. Gupta, and S. Srivastava, "Triple band notched UWB antenna design using electromagnetic band gap structures," Progress In Electromagnetics Research C, Vol. 66, 139-147, 2016.
doi:10.2528/PIERC16052304