Vol. 61
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-10-23
An Efficient Technique for Digital Video Broadcasting Using High-Altitude Aerial Platforms and Adaptive Arrays
By
Progress In Electromagnetics Research M, Vol. 61, 97-110, 2017
Abstract
In this paper, an efficient broadcasting technique for digital-video and audio broadcasting (DVB/DAB) is proposed using High-Altitude Platforms (HAP) and a new adaptive beamforming technique. The proposed beamforming technique uses two cascaded weighting functions to generate uniform flat footprint with improved link performance compared to terrestrial systems. These two weighting functions include flattening and smoothing coefficients to generate flat power distribution with lower sidelobe levels. Simulation results show that the generated coverage beam pattern has low sidelobe levels that is more than 40 dB below the main coverage level with less than 1 dB variation over the main coverage lobe level. Also, an almost uniform bit-energy to noise power spectral density can be achieved over the coverage area with minor variations due to the changing slant distance over the coverage area of broadcasting HAP.
Citation
Yasser Albagory, "An Efficient Technique for Digital Video Broadcasting Using High-Altitude Aerial Platforms and Adaptive Arrays," Progress In Electromagnetics Research M, Vol. 61, 97-110, 2017.
doi:10.2528/PIERM17082403
References

1. Fischer, W., Digital Video and Audio Broadcasting Technology, a Practical Engineering Guide, 3rd Ed., Springer, 2011.

2. Zhang, M. and S. Kim, "Efficient soft demodulation scheme for digital video broadcasting via satellite second generation system," IET Communications, Vol. 8, No. 1, 124-132, Jan. 3, 2014.
doi:10.1049/iet-com.2013.0307

3. Oria, C., V. Baena, J. Granado, J. García, D. Pérez-Calderón, P. López, and D. Ortiz, "Performance evaluation of complementary code combining diversity in DVB-SH," Digital Signal Processing, Vol. 21, No. 6, 718-724, Dec. 2011.
doi:10.1016/j.dsp.2011.08.002

4. Karapantazis, S. and F. Pavlidou, "Broadband communications via high-altitude platforms: A survey," IEEE Communications Surveys & Tutorials, Vol. 7, 2-31, 2005.
doi:10.1109/COMST.2005.1423332

5. Mohammed, A. and Z. Yang, "Broadband communications and applications from high altitude platforms," International Journal of Recent Trends in Engineering, Vol. 1, No. 3, May 2009.

6. Aljahdali, S., M. Nofal, and Y. Albagory, "Overview on modeling and design of stratospheric mobile cellular system," IEEE International Conference on Multimedia Computing and Systems (ICMCS'12), Tangier, Morocco, 2012.

7. Fauzi, N. F., M. T. Ali, N. H. A. Rahman, and Y. Yamada, "Optimized parabolic reflector antenna for Malaysia beam coverage," 2016 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 150-153, Langkawi, 2016, doi: 10.1109/APACE.2016.7915873.

8. Hosseini, A., S. Kabiri, and F. De Flaviis, "V-band high-gain printed quasi-parabolic reflector antenna with beam-steering," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1589-1598, Apr. 2017, doi: 10.1109/TAP.2017.2670324.
doi:10.1109/TAP.2017.2670324

9. Rocca, P. and A. F. Morabito, "Optimal synthesis of reconfigurable planar arrays with simplified architectures for monopulse radar applications," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, 1048-1058, 2015.
doi:10.1109/TAP.2014.2386359

10. Wu, J.-M., X. Lei, D.-F. Zhou, L. Hou, and H.-W. Chen, "Design of ring-focus elliptical beam reflector antenna," International Journal of Antennas and Propagation, Vol. 2016, 7 pages, Article ID 9615064, 2016, doi:10.1155/2016/9615064.