Vol. 62
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-11-08
A U-Shaped Meandered Slot Antenna for Biomedical Applications
By
Progress In Electromagnetics Research M, Vol. 62, 65-77, 2017
Abstract
In this paper, a U-shaped microstrip patch antenna with meandered slots is presented. It is designed for biomedical applications to operate at 2.45 GHz. Based on the simulation experience, two designs of the patch are introduced with and without use of meandered slots. The comparative study between these two is also demonstrated. It is observed that the antenna with meandered slots shows good performance with sufficient bandwidth, low losses and is capable of use in biomedical applications. Furthermore, the proposed antenna has small size of 35*29*1.6 mm3, and the size of the ground is only 14% of the overall antenna size. The measured and simulated results show good agreement with each other. The antenna is fabricated on an FR4 substrate, and simulation is carried out on FDTD based Empire XCcel simulator.
Citation
Shikha Sukhija, and Rakesh Kumar Sarin, "A U-Shaped Meandered Slot Antenna for Biomedical Applications," Progress In Electromagnetics Research M, Vol. 62, 65-77, 2017.
doi:10.2528/PIERM17082101
References

1. Kim, J. and Y. Rahmat-Samii, "Implanted antennas inside a human body: Simulations, designs, and characterizations," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1934-1943, Aug. 2004.
doi:10.1109/TMTT.2004.832018

2. Kim, J.-M., J.-G. Yook, W.-Y. Song, Y.-J. Yoon, J.-Y. Park, and H.-K. Park, "Compact meander-type slot antennas," IEEE Antennas and Propagation Society International Symposium, 2001, Vol. 2, 724-727, Jul. 8-13, 2001.

3. Kiourti, A. and K. S. Nikita, "Miniature scalp-implantable antennas for telemetry in the MICS and ISM bands: Design, safety considerations and link budget analysis," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3568-3575, Aug. 2012.
doi:10.1109/TAP.2012.2201078

4. Kiourti and K. S. Nikita, "Meandered versus spiral novel miniature pifas implanted in the human head: Tuning and performance," Proceedings of the 2nd ICST International Conference on Wireless Mobile Communication and Healthcare (MobiHealth 2012), Kos Island, Greece, Oct. 2011.

5. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Design of implantable microstrip antenna for communication with medical implants," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1944-1951, Aug. 2004.
doi:10.1109/TMTT.2004.831976

6. Kiourti, A., M. Christopoulou, and K. S. Nikita, "Performance of a novel miniature antenna implanted in the human head for wireless biotelemetry," IEEE International Symposium on Antennas and Propagation, Spokane, Washington, Jul. 2011.

7. Jain, L., R. Singh, S. Rawat, and K. Ray, "Stacked arrangement of meandered patches for biomedical applications," Int. J. Syst. Assur. Eng. Manag., 1-8, 2016.

8. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Miniaturized biocompatible microstrip antenna using genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 6, 1939-1945, Jun. 2005.
doi:10.1109/TAP.2005.848461

9. Huang, F. J., C. M. Lee, C. L. Chang, L. K. Chen, T. C. Yo, and C. H. Luo, "Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2646-2653, Jul. 2011.
doi:10.1109/TAP.2011.2152317

10. Liu, W. C., F. M. Yeh, and M. Ghavami, "Miniaturized implantable broadband antenna for biotelemetry communication," Microwave and Optical Technology Letters, Vol. 50, No. 9, 2407-2409, Sep. 2008.
doi:10.1002/mop.23649

11. Liu, W. C., S. H. Chen, and C. M. Wu, "Bandwidth enhancement and size reduction of an implantable PIFA antenna for biotelemetry devices," Microwave and Optical Technology Letters, Vol. 51, No. 3, 755-757, Mar. 2009.
doi:10.1002/mop.24142

12. Sukhija, S. and R. K. Sarin, "Low-profile patch antennas for biomedical and wireless applications," J. Comput. Electron., Vol. 16, No. 2, 354-368, Jun. 2017.
doi:10.1007/s10825-017-0957-z

13. Koohestani, M. and M. Golpour, "U-shaped microstrip patch antenna with novel parasitic tuning stubs for ultra-wideband applications," IET Microwaves, Antennas & Propagation, Vol. 4, No. 7, 938-946, Jul. 2010.
doi:10.1049/iet-map.2009.0049

14. Kaya, A., "Meandered slot and slit loaded compact microstrip antenna with integrated impedance tuning network," Progress In Electromagnetics Research B, Vol. 1, 219-235, 2008.
doi:10.2528/PIERB07102601

15. Xu, L.-J., Y.-X. Guo, and W. Wu, "Miniaturised slot antenna for biomedical applications," Electronics Letters, Vol. 49, No. 17, 1060-1061, Aug. 15, 2013.
doi:10.1049/el.2013.2125

16. Hall, P. S. and Y. Hao, Antennas and Propagation for Body-centric Communications, Artech House, 2006.

17. Karacolak, T., A. Z. Hood, and E. Topsakal, "Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 4, 1001-1008, Apr. 2008.
doi:10.1109/TMTT.2008.919373

18. Beach, R. D., F. V. Kuster, and F. Moussy, "Subminiature implantable potentiostat and modified commercial telemetry device for remote glucose monitoring," IEEE Transactions on Instrumentation and Measurement, Vol. 48, No. 6, 1239-1245, Dec. 1999.
doi:10.1109/19.816143

19. Tak, J., K. Kwon, and J. Choi, "Design of a dual band repeater antenna for medical self-monitoring applications," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2091-2092, July 7-13, 2013.

20. Malika, T., K. Abdennaceur, A. Rahma, and A. Frederic, "Miniaturized on-body patch antenna for 430 MHz wireless digestive monitoring system," 2014 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS) Proceedings, 57-60, Oct. 17, 2014.

21. Medical Implant Communication Service (MICS) federal register, Rules reg., Vol. 64, No. 240, Dec. 1999.

22. Smith, E. K., "Radiowave propagation in ITU-R," IEEE Magazine in Antennas and Propagation, Vol. 41, No. 1, 118-119, Feb. 1999.
doi:10.1109/MAP.1999.755034

23. IEEE Standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, IEEE Standard C95.1-1999, 1999.

24. Nezhad, S. M. A., G. Dadashzadeh, and A. Foudazi, "A tunable dual band notch on a UWB printed slot monopole antenna by using open circuit stubs," Microwave and Optical Technology Letters, Vol. 53, No. 8, 1931-1935, 2011.
doi:10.1002/mop.26095

25. User and Reference Manual for the 3D EM Time Domain Simulator Empire XCcel, ver. 5.5, IMST GmbH, 2012, [online], available: http://www.empire.de/.

26. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., John Wiley, 2005.

27. Shukla, B. K., N. Kashyap, and R. K. Baghel, "Circular slotted elliptical patch antenna with elliptical notch in ground," Progress In Electromagnetics Research C, Vol. 74, 181-189, 2017.
doi:10.2528/PIERC17032705

28. Sayidmarie, K. H. and L. S. Yahya, "Modeling of dual-band crescent-shape monopole antenna for WLAN applications," International Journal of Electromagnetics and Applications, Vol. 4, No. 2, 31-39, 2014.

29. Tran, V. N. and S. S. Stuchly, "Dielectric properties of beef, beef liver, chicken and salmon at frequencies from 100 to 2500 MHz," Journal of Microwave Power and Electromagnetic Energy, Vol. 22, 29-33, 1987.
doi:10.1080/08327823.1987.11688003

30. Ashok Kumar, S. and T. Shanmuganantham, "Analysis and design of implantable Z-monopole antennas at 2.45 GHz ISM band for biomedical applications," Microwave and Optical Technology Letters, Vol. 57, No. 2, 468-473, 2015.
doi:10.1002/mop.28870

31. Duan, Z., Y. X. Guo, R. F. Xue, M. Je, and D. L. Kwong, "Differentially fed dual-band implantable antenna for biomedical applications," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5587-5595, Dec. 2012.
doi:10.1109/TAP.2012.2209197

32. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, 2271-2293, Nov. 1996.

33. Lee, C. M., T. C. Yo, F. J. Huand, and C. H. Luo, "Bandwidth enhancement of planar inverted-F antenna for implantable biotelemetry," Microwave and Optical Technology Letters, Vol. 51, 749-752, Mar. 2009.
doi:10.1002/mop.24189

34. Guo, X., Y. Hang, Z. Xie, C. Wu, L. Gao, and C. Liu, "Flexible and wearable 2.45 GHz CPW-fed antenna using inkjet-printing of silver nanoparticles on pet substrate," Microwave and Optical Technology Letters, Vol. 59, No. 1, 204-208, 2017.
doi:10.1002/mop.30261

35. Salim, M. and A. Pourziad, "A novel reconfigurable spiral-shaped monopole antenna for biomedical applications," Progress In Electromagnetics Research Letters, Vol. 57, 79-84, 2015.
doi:10.2528/PIERL15083103

36. Sukhija, S. and R. K. Sarin, "Design and performance of two-sleeve low profile antenna for bio-medical applications," Journal of Electrical Systems and Information Technology, Vol. 4, No. 1, 49-61, 2017.
doi:10.1016/j.jesit.2016.10.013

37. Gil, I. and R. Fernández-García, "Wearable PIFA antenna implemented on jean substrate for wireless body area network," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 11-12, 1194-1204, 2017.
doi:10.1080/09205071.2017.1341854

38. Nel, M., J. Joubert, and J. W. Odendaal, "The measurement of complex antenna transfer functions for ultra-wideband antennas in a compact range [measurements corner]," IEEE Antennas and Propagation Magazine, Vol. 56, No. 6, 163-170, 2014.
doi:10.1109/MAP.2014.7011037