Vol. 61
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-10-22
Study of the Calculation Method of Shielding Effectiveness of Rectangle Enclosure with an Electrically Large Aperture
By
Progress In Electromagnetics Research M, Vol. 61, 85-96, 2017
Abstract
An analytical model based on the Bethe's theory of diffraction by small holes is presented to predict the shielding effectiveness (SE) of metallic rectangular enclosure with electrically large aperture under plane wave illumination over a wide frequency range (0~3 GHz). In this model, the aperture is represented as electric and magnetic dipoles located at the center of the aperture, and the coupling relation between external plane wave and electromagnetic field inside the enclosure is established. The approximate solution of electromagnetic field distribution inside the enclosure is obtained in terms of the integrals of the electric and magnetic dynamic Green function. Finally, the influence of enclosure thickness on SE is calculated by introducing thickness attenuation coefficient. The model considers the effect of the thickness on the calculation results and is simple with low computation complex and high estimation accuracy. Besides, the effects of parameters like enclosure and aperture dimensions, aperture and observation point positions, incident and polarization direction of the plane wave on SE can be analyzed comprehensively based on the model. Simulation results of the proposed model are in accord with that of the TLM method, which verifies the accuracy and reliability of the model.
Citation
Pu-Yu Hu, and Xiaoying Sun, "Study of the Calculation Method of Shielding Effectiveness of Rectangle Enclosure with an Electrically Large Aperture," Progress In Electromagnetics Research M, Vol. 61, 85-96, 2017.
doi:10.2528/PIERM17081104
References

1. Carpes, W. P., Jr., et al. "TLM and FEM methods applied in the analysis of electromagnetic coupling," IEEE Transactions on Magnetics, Vol. 36, No. 4, 982-985, 2000.
doi:10.1109/20.877606

2. Dehkhoda, P., A. Tavakoli, and M. Azadifar, "Shielding effectiveness of an enclosure with finite wall thickness and perforated opposing walls at oblique incidence and arbitrary polarization by GMMoM," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 4, 792-805, 2012.
doi:10.1109/TEMC.2012.2188855

3. Jiao, C., et al. "Subcell FDTD analysis of shielding effectiveness of a thin-walled enclosure with an aperture," IEEE Transactions on Magnetics, Vol. 42, No. 4, 1075-1078, 2006.
doi:10.1109/TMAG.2006.871638

4. Robinson, M. P., et al. "Shielding effectiveness of a rectangular enclosure with a rectangular aperture," Electronics Letters, Vol. 32, No. 17, 1559-1560, 1996.
doi:10.1049/el:19961030

5. Po'Ad, F. A., et al. "Analytical and experimental study of the shielding effectiveness of a metallic enclosure with off-centered apertures," International Zurich Symposium on Electromagnetic Compatibility, 2006, Emc-Zurich, 618-621, IEEE Xplore, 2006.

6. Dan, S., Y. Shen, and Y. Gao, "3 high-order mode transmission line model of enclosure with off-center aperture," International Symposium on Electromagnetic Compatibility, 361-364, IEEE, 2007.

7. Nie, B. L. and P. A. Du, "An efficient and reliable circuit model for the shielding effectiveness prediction of an enclosure with an aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 3, 357-364, 2015.
doi:10.1109/TEMC.2014.2383438

8. Liu, E., P. A. Du, and B. Nie, "An extended analytical formulation for fast prediction of shielding effectiveness of an enclosure at different observation points with an off-axis aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 3, 589-598, 2014.
doi:10.1109/TEMC.2013.2289742

9. Azaro, R., et al. "A circuital approach to evaluating the electromagnetic field on rectangular apertures backed by rectangular cavities," IEEE Transactions on Microwave Theory & Techniques, Vol. 50, No. 10, 2259-2266, 2002.
doi:10.1109/TMTT.2002.803434

10. Konefal, T., et al. "A fast multiple mode intermediate level circuit model for the prediction of shielding effectiveness of a rectangular box containing a rectangular aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 4, 678-691, 2006.
doi:10.1109/TEMC.2005.853715

11. Yin, M. C. and P. A. Du, "An improved circuit model for the prediction of the shielding effectiveness and resonances of an enclosure with apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 2, 448-456, 2016.
doi:10.1109/TEMC.2016.2517163

12. Shim, J., et al. "Circuital modeling and measurement of shielding effectiveness against oblique incident plane wave on apertures in multiple sides of rectangular enclosure," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 3, 566-577, 2010.
doi:10.1109/TEMC.2009.2039483

13. Hao, J.-H., P.-H. Qi, J.-Q. Fan, and Y.-Q. Guo, "Analysis of shielding effectiveness of enclosures with apertures and inner windows with TLM," Progress In Electromagnetic Research M, Vol. 32, 73-82, 2013.
doi:10.2528/PIERM13060312

14. Solin, J. R., "Formula for the field excited in a rectangular cavity with a small aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 1, 82-90, 2011.
doi:10.1109/TEMC.2010.2053711

15. Solin, J. R., "Formula for the field excited in a rectangular cavity with an electrically large aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 1, 188-192, 2012.
doi:10.1109/TEMC.2011.2179941

16. Tesche, F. M., M. V. Ianoz, and T. Karlsson, EMC Analysis Methods and Computational Models, Wiley, 1997.

17. Cohn, S. B., "Microwave coupling by large apertures," Proceedings of the IRE, Vol. 40, No. 6, 696-699, 1952.
doi:10.1109/JRPROC.1952.274063

18. Pozar, D. M., Microwave Engineering, Academic, 2006.

19. Mcdonald, N. A., "Polynomial approximations for the electric polarizabilities of some small apertures," IEEE Xplore, Vol. 33, No. 11, 1146-1149, 1985.

20. Mcdonald, N. A., "Polynomial approximations for the transverse magnetic polarizabilities of some small apertures," IEEE Transactions on Microwave Theory & Techniques, Vol. 35, No. 1, 20-23, 2003.
doi:10.1109/TMTT.1987.1133589

21. Mcdonald, N. A., "Simple approximations for the longitudinal magnetic polarizabilities of some small apertures," IEEE Transactions on Microwave Theory & Techniques, Vol. 36, No. 7, 1141-1144, 2002.
doi:10.1109/22.3648

22. Nitsch, J. B., S. V. Tkachenko, and S. Potthast, "Transient excitation of rectangular resonators through electrically small circular holes," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 6, 1252-1259, 2012.
doi:10.1109/TEMC.2012.2201724

23. Li, L. W., et al. "On the eigenfunction expansion of electromagnetic dyadic Green's functions in rectangular cavities and waveguides," IEEE Transactions on Microwave Theory & Techniques, Vol. 43, No. 3, 700-702, 1995.
doi:10.1109/22.372122

24. Crawhall, R. J. H., EMI Potential of Multiple Sources within a Shielded Enclosure, 1993.

25. Goudos, S. K., E. E. Vafiadis, and J. N. Sahalos, "Monte Carlo simulation for the prediction of the emission level from multiple sources inside shielded enclosures," IEEE Transactions on Electromagnetic Compatibility, Vol. 44, No. 2, 291-308, 2002.
doi:10.1109/TEMC.2002.1003394