1. Carpes, W. P., Jr., et al. "TLM and FEM methods applied in the analysis of electromagnetic coupling," IEEE Transactions on Magnetics, Vol. 36, No. 4, 982-985, 2000.
doi:10.1109/20.877606
2. Dehkhoda, P., A. Tavakoli, and M. Azadifar, "Shielding effectiveness of an enclosure with finite wall thickness and perforated opposing walls at oblique incidence and arbitrary polarization by GMMoM," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 4, 792-805, 2012.
doi:10.1109/TEMC.2012.2188855
3. Jiao, C., et al. "Subcell FDTD analysis of shielding effectiveness of a thin-walled enclosure with an aperture," IEEE Transactions on Magnetics, Vol. 42, No. 4, 1075-1078, 2006.
doi:10.1109/TMAG.2006.871638
4. Robinson, M. P., et al. "Shielding effectiveness of a rectangular enclosure with a rectangular aperture," Electronics Letters, Vol. 32, No. 17, 1559-1560, 1996.
doi:10.1049/el:19961030
5. Po'Ad, F. A., et al. "Analytical and experimental study of the shielding effectiveness of a metallic enclosure with off-centered apertures," International Zurich Symposium on Electromagnetic Compatibility, 2006, Emc-Zurich, 618-621, IEEE Xplore, 2006.
6. Dan, S., Y. Shen, and Y. Gao, "3 high-order mode transmission line model of enclosure with off-center aperture," International Symposium on Electromagnetic Compatibility, 361-364, IEEE, 2007.
7. Nie, B. L. and P. A. Du, "An efficient and reliable circuit model for the shielding effectiveness prediction of an enclosure with an aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 3, 357-364, 2015.
doi:10.1109/TEMC.2014.2383438
8. Liu, E., P. A. Du, and B. Nie, "An extended analytical formulation for fast prediction of shielding effectiveness of an enclosure at different observation points with an off-axis aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 3, 589-598, 2014.
doi:10.1109/TEMC.2013.2289742
9. Azaro, R., et al. "A circuital approach to evaluating the electromagnetic field on rectangular apertures backed by rectangular cavities," IEEE Transactions on Microwave Theory & Techniques, Vol. 50, No. 10, 2259-2266, 2002.
doi:10.1109/TMTT.2002.803434
10. Konefal, T., et al. "A fast multiple mode intermediate level circuit model for the prediction of shielding effectiveness of a rectangular box containing a rectangular aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 4, 678-691, 2006.
doi:10.1109/TEMC.2005.853715
11. Yin, M. C. and P. A. Du, "An improved circuit model for the prediction of the shielding effectiveness and resonances of an enclosure with apertures," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 2, 448-456, 2016.
doi:10.1109/TEMC.2016.2517163
12. Shim, J., et al. "Circuital modeling and measurement of shielding effectiveness against oblique incident plane wave on apertures in multiple sides of rectangular enclosure," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 3, 566-577, 2010.
doi:10.1109/TEMC.2009.2039483
13. Hao, J.-H., P.-H. Qi, J.-Q. Fan, and Y.-Q. Guo, "Analysis of shielding effectiveness of enclosures with apertures and inner windows with TLM," Progress In Electromagnetic Research M, Vol. 32, 73-82, 2013.
doi:10.2528/PIERM13060312
14. Solin, J. R., "Formula for the field excited in a rectangular cavity with a small aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 1, 82-90, 2011.
doi:10.1109/TEMC.2010.2053711
15. Solin, J. R., "Formula for the field excited in a rectangular cavity with an electrically large aperture," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 1, 188-192, 2012.
doi:10.1109/TEMC.2011.2179941
16. Tesche, F. M., M. V. Ianoz, and T. Karlsson, EMC Analysis Methods and Computational Models, Wiley, 1997.
17. Cohn, S. B., "Microwave coupling by large apertures," Proceedings of the IRE, Vol. 40, No. 6, 696-699, 1952.
doi:10.1109/JRPROC.1952.274063
18. Pozar, D. M., Microwave Engineering, Academic, 2006.
19. Mcdonald, N. A., "Polynomial approximations for the electric polarizabilities of some small apertures," IEEE Xplore, Vol. 33, No. 11, 1146-1149, 1985.
20. Mcdonald, N. A., "Polynomial approximations for the transverse magnetic polarizabilities of some small apertures," IEEE Transactions on Microwave Theory & Techniques, Vol. 35, No. 1, 20-23, 2003.
doi:10.1109/TMTT.1987.1133589
21. Mcdonald, N. A., "Simple approximations for the longitudinal magnetic polarizabilities of some small apertures," IEEE Transactions on Microwave Theory & Techniques, Vol. 36, No. 7, 1141-1144, 2002.
doi:10.1109/22.3648
22. Nitsch, J. B., S. V. Tkachenko, and S. Potthast, "Transient excitation of rectangular resonators through electrically small circular holes," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 6, 1252-1259, 2012.
doi:10.1109/TEMC.2012.2201724
23. Li, L. W., et al. "On the eigenfunction expansion of electromagnetic dyadic Green's functions in rectangular cavities and waveguides," IEEE Transactions on Microwave Theory & Techniques, Vol. 43, No. 3, 700-702, 1995.
doi:10.1109/22.372122
24. Crawhall, R. J. H., EMI Potential of Multiple Sources within a Shielded Enclosure, 1993.
25. Goudos, S. K., E. E. Vafiadis, and J. N. Sahalos, "Monte Carlo simulation for the prediction of the emission level from multiple sources inside shielded enclosures," IEEE Transactions on Electromagnetic Compatibility, Vol. 44, No. 2, 291-308, 2002.
doi:10.1109/TEMC.2002.1003394