Vol. 70
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-09-25
Design and Test of a 0.3 THz Compact Antenna Test Range
By
Progress In Electromagnetics Research Letters, Vol. 70, 81-87, 2017
Abstract
The terahertz (THz) compact antenna test range (CATR) detection technology is the foundation of terahertz target recognition technology. It provides an excellent plane wave area which can well meet the far-field condition of antenna pattern and RCS test. Based on the microwave single reflector CATR system that we have designed before, this paper mainly aims at designing a 0.3 THz CATR system and then gives the simulation model of the system errors. After the preparation of the above work, we begin to detect its 0.3 THz band plane wave field, and the final test results can be used for further application.
Citation
Chi Liu, and Xuetian Wang, "Design and Test of a 0.3 THz Compact Antenna Test Range," Progress In Electromagnetics Research Letters, Vol. 70, 81-87, 2017.
doi:10.2528/PIERL17080504
References

1. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
doi:10.1163/156939304774113089

2. Donelli, M., I. J. Craddock, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2011.
doi:10.2528/PIERM11040903

3. Rocca, P., M. Donelli, G. L. Gragnani, and A. Massa, "Iterative multi-resolution retrieval of non-measurable equivalent currents for the imaging of dielectric objects," Inverse Problems, Vol. 25, No. 5, 2009.
doi:10.1088/0266-5611/25/5/055004

4. Franceschini, G., M. Donelli, R. Azaro, and A. Massa, "Inversion of phaseless total field data using a two-step strategy based on the iterative multiscaling approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 12, 3527-3539, December 2006.
doi:10.1109/TGRS.2006.881753

5. Chung, B. K., H. T. Chuah, and J. W. Bredow, "A microwave anechoic chamber for radar-cross section measurement," IEEE Antennas and Propagation Magazine, Vol. 39, No. 3, 21-26, 1997.
doi:10.1109/74.598557

6. Johnson, R. C., H. A. Ecker, and R. A. Moore, "Compact range techniques and measurements," IEEE Transactions on Antennas and Propagation, Vol. 17, No. 2, 568-576, 1969.
doi:10.1109/TAP.1969.1139517

7. Kou, Y., X. Wang, and C. Liu, "Quiet area tests of a Ka-band compact range," International Conference on Information Sciences, Machinery, Materials and Energy, 2015.

8. Trunov, V. and A. Kalinin, "On the use of the multifrequency method for studying scattered fields during the antenna measurements in an anechoic chamber," Radiophysics and Quantum Electronics, Vol. 47, No. 12, 955-965, 2004.
doi:10.1007/s11141-005-0037-2

9. Dou, W.-B., H. F. Meng, B. Nie, Z.-X. Wang, and F. Yang, "Scanning antenna at THz band based on quasi-optical techniques," Progress In Electromagnetics Research, Vol. 108, 343-359, 2010.
doi:10.2528/PIER10062810

10. Hirvonen, T., J. P. S. Ala-Laurinaho, J. Tuovinen, et al. "A compact antenna test range based on a hologram," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 5, 1270-1276, 1997.
doi:10.1109/8.611247

11. Descardeci, J. R. and C. G. Parini, "Trireflector compact antenna test range," IEE Proceedings --- Microwaves Antennas and Propagation, Vol. 144, No. 2, 305-310, 1997.
doi:10.1049/ip-map:19971295

12. Jiang, G., B. B. Cheng, and J. Zhang, "0.14 THz radar imaging based radar cross section measurement," Journal of Terahertz Science & Electronic Information Technology, Vol. 12, No. 1, 19-23, 2014.