Vol. 71
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-10-09
A Novel Wideband Phase Shifter Using T- and Pi-Networks
By
Progress In Electromagnetics Research Letters, Vol. 71, 29-36, 2017
Abstract
In this paper, a wideband differential phase shifter based on modified T- and Pi- networks is proposed. Invoking the even-odd mode analysis in this symmetric phase shifter, closed-form equations of its S-parameters are derived. The derived equations enable a generic design scheme of the phase shifter, that is, ideally the phase shifter can be designed for any differential phase requirements. To illustrate the proposed idea, design parameters for differential phases of 45˚, 60˚, 75˚, 90˚, 105˚ and 120˚ are evaluated and tabulated considering a center frequency of 3 GHz. Simulation of these examples using the Keysight ADS exhibits the intended performance. For validation, a 90˚ phase shifter has been fabricated and tested. The measurement results show a return loss better that 10 dB, an insertion loss of less than 1 dB, and a ± 7° of phase deviation from 1.18 GHz to 5.44 GHz, which is equivalent to a fractional bandwidth of 142%.
Citation
Md Hedayatullah Maktoomi, Rahul Gupta, Mohammad A. Maktoomi, and Mohammad S. Hashmi, "A Novel Wideband Phase Shifter Using T- and Pi-Networks," Progress In Electromagnetics Research Letters, Vol. 71, 29-36, 2017.
doi:10.2528/PIERL17080202
References

1. Schiffman, B. M., "A new class of broad-band microwave 90-degree phase shifters," IRE Transactions on Microwave Theory and Techniques, Vol. 6, No. 2, 232-237, April 1985.
doi:10.1109/TMTT.1958.1124543

2. Schiek, B. and J. Kohler, "A method for broad-band matching of microstrip differential phase shifters," IEEE Transactions on Microwave Theory and Techniques, Vol. 25, No. 8, 666-671, August 1977.
doi:10.1109/TMTT.1977.1129183

3. Brown, W. J. and J. P. Starski, "A broad-band differential phase shifter of novel design," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1319-1322, 1999.

4. Quirarte, J. L. R. and J. P. Starski, "Novel Schiffman phase shifters," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 1, 9-14, January 1993.
doi:10.1109/22.210223

5. Guo, Y., Z. Zhang, and L. Ong, "Improved wideband Schiffman phase shifter," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 3, 1196-1200, March 2006.
doi:10.1109/TMTT.2005.864105

6. Abbosh, A. M., "Ultra-wideband phase shifters," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 9, 1935-1941, September 2007.
doi:10.1109/TMTT.2007.904051

7. Guo, L. and A. M. Abbosh, "Phase shifters with wide range of phase and ultra-wideband performance using stub-loaded coupled structure," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 3, 167-169, March 2014.
doi:10.1109/LMWC.2013.2293658

8. Zheng, S. Y., W. S. Chan, and K. F. Man, "Broadband phase shifter using loaded transmission line," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 9, 498-500, September 2010.
doi:10.1109/LMWC.2010.2050868

9. Tang, X. and K. Mouthaan, "Design of a UWB phase shifter using shunt λ/4 stubs," IEEE MTT-S International Microwave Symposium Digest, 1021-1024, June 2009.

10. Yeung, S. H., Z. Mei, T. K. Sarkar, and M. Salazar-Palma, "Design and testing of a single-layer microstrip ultrawideband 90 differential phase shifter," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 3, 122-124, March 2013.
doi:10.1109/LMWC.2013.2244875

11. Wang, J., Z. Shen, and L. Zhao, "UWB 90º phase shifter based on broadside coupler and T-shaped stub," IET Electronics Letters, Vol. 52, No. 25, 2048-2050, December 2016.
doi:10.1049/el.2016.3364

12. Abbosh, A. M., "Broadband fixed phase shifters," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 1, 22-24, January 2011.
doi:10.1109/LMWC.2010.2079320

13. Pu, X. Y., S. Y. Zheng, J. Liu, Y. Li, and Y. Long, "Novel multi-way broadband differential phase shifter with uniform reference line using coupled line structure," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 3, 166-168, March 2015.
doi:10.1109/LMWC.2015.2390538

14. Xu, B. W., S. Y. Zheng, and Y. M. Pan, "A universal reference line-based differential phase shifter structure with simple design formulas," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 7, No. 1, 123-130, January 2017.
doi:10.1109/TCPMT.2016.2633483

15. Wang, Y., M. E. Bialkowski, and A. M. Abbosh, "Double microstrip-slot transitions for broadband microstrip phase shifters," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 2, 58-60, February 2012.
doi:10.1109/LMWC.2011.2181348

16. Zhang, W., Y. Liu, Y. Wu, W. Wang, M. Su, and J. Gao, "A modified coupled-line Schiffman phase shifter with short reference line," Progress In Electromagnetics Research C, Vol. 54, 17-27, 2014.

17. Wu, Y., L. Yao, W. Wang, and Y. Liu, "A wide-band 180-degree phase shifter using a pair of coupled-line stubs," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 240-241, July 2015.

18. Bai, Y.-F., X.-H. Wang, C.-J. Gao, Q.-L. Huang, and X.-W. Shi, "Design of compact quad-frequency impedance transformer using two-section coupled line," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 8, 2417-2423, August 2012.
doi:10.1109/TMTT.2012.2202682