Vol. 70
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-09-29
Design of a Frequency Reconfigurable Fabry-Perot Cavity Antenna with Single Layer Partially Reflecting Surface
By
Progress In Electromagnetics Research Letters, Vol. 70, 115-121, 2017
Abstract
A novel design of frequency reconfigurable Fabry-Pérot cavity antenna is presented. The superstrate of the antenna is a reconfigurable partially reflecting surface with PIN diodes on it. A dual-band patch antenna is used as the radiator of the antenna. Through changing the states of diodes, the partially reflecting surface can present different reflection phases, so the working frequency of the antenna can be tuned. The operation of frequency reconfiguration and the design method of the antenna are described exhaustively. A prototype antenna is fabricated and measured. The measured results show that the antenna can realize 13.1 dB gain at 4.6 GHz and 17.1 dB gain at 5.5 GHz with impedance bandwidths of 3.3% and 4.7%, respectively. Good agreement between the simulated and measured results is achieved, which proves the correctness of the design method. Besides, this method can also be used to design Fabry-Pérot cavity antenna working at other frequencies.
Citation
Peng Xie, and Guang-Ming Wang, "Design of a Frequency Reconfigurable Fabry-Perot Cavity Antenna with Single Layer Partially Reflecting Surface," Progress In Electromagnetics Research Letters, Vol. 70, 115-121, 2017.
doi:10.2528/PIERL17072505
References

1. Yeo, J. and D. Kim, "Novel design of a high-gain and wideband Fabry-Perot cavity antenna using a tapered AMC substrate," J. Infrared Milli. Terahz Waves, Vol. 30, 217-224, 2009.
doi:10.1007/s10762-008-9451-9

2. Zeb, B. A., R. M. Hashmi, K. P. Esselle, and Y. Ge, "The use of reflection and transmission models to design wideband and dual-band Fabry-Perot cavity antennas," 2013 International Symposium on Electromagnetic Theory, 1084-1087, 2013.

3. Kim, D., J. Ju, and J. Choi, "A broadband Fabry-Perot cavity antenna designed using an improved resonance prediction method," Microw. Opt. Technol. Lett., Vol. 53, No. 5, 1065-1069, May 2011.
doi:10.1002/mop.25898

4. Wang, N., Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with two complementary FSS layers," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2463-2471, May 2014.
doi:10.1109/TAP.2014.2308533

5. Kim, D., "Noval dual-band Fabry-P´erot cavity antenna with low frequency separation ratio," Microw. Opt. Technol. Lett., Vol. 51, No. 8, 1869-1872, August 2009.
doi:10.1002/mop.24509

6. Konstantinidis, K., A. P. Feresidis, and P. S. Hall, "Dual subwavelength Fabry-Perot cavities for broadband highly directive antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 1184-1186, 2014.
doi:10.1109/LAWP.2014.2331801

7. Konstantinidis, K., A. P. Feresidis, and P. S. Hall, "Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3474-3481, July 2014.
doi:10.1109/TAP.2014.2320755

8. Abdelghani, M. L., H. Attia, and T. A. Denidni, "Dual- and wideband Fabry-Perot resonator antenna for WLAN applications," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 473-476, 2017.
doi:10.1109/LAWP.2016.2585087

9. Meng, F. and S. K. Sharma, "A dual-band high-gain resonant cavity antenna with a single layer superstrate," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 2320-2325, May 2015.
doi:10.1109/TAP.2015.2405082

10. Vaid, S. and A. Mittal, "A low profile dual band resonant cavity antenna," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 27, No. 2, 2017.
doi:10.1002/mmce.21065

11. Trentini, G. V., "Partially reflecting sheet arrays," IRE Trans. Antennas Propag., Vol. 4, No. 4, 666-671, Oct. 1956.
doi:10.1109/TAP.1956.1144455