Vol. 62
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-11-08
Utilization of Low Computational Cost Two Dimensional Analytical Equations in Optimization of Multi Rings Permanent Magnet Thrust Bearings
By
Progress In Electromagnetics Research M, Vol. 62, 51-63, 2017
Abstract
Replacement of conventional bearings by passive magnetic bearings for highspeed applications, in terms of their performance will be effective, if the design is carried out by optimizing the geometrical dimensions in the given control volume. Present work deals with modification and utilization of two-dimensional (2D) analytical equations in optimization of multi rings permanent magnet (PM) thrust bearing configurations. Conventional and rotational magnetized direction (RMD) configurations are selected in optimizing the design variables for maximum bearing characteristics in a given volume with a constant aspect ratio. The design variables chosen for optimization are axial offset of rotor, number of rings, radial air thickness and inner diameter of the rotor and stator PM rings. MATLAB codes for solving 2D equations are developed in optimizing configuration variables. Further, optimized parameter values of the two configurations are compared. Finally, optimized results obtained using 2D and three-dimensional (3D) equations for the conventional configuration with same aspect ratio are compared, and conclusions are presented.
Citation
Siddappa Iranna Bekinal, Mrityunjay Doddamani, and Nikhil D. Dravid, "Utilization of Low Computational Cost Two Dimensional Analytical Equations in Optimization of Multi Rings Permanent Magnet Thrust Bearings," Progress In Electromagnetics Research M, Vol. 62, 51-63, 2017.
doi:10.2528/PIERM17072007
References

1. Bekinal, S. I., T. R. Anil, and S. Jana, "Analysis of axially magnetized permanent magnet bearing characteristics," Progress In Electromagnetics Research B, Vol. 44, 327-343, 2012.
doi:10.2528/PIERB12080910

2. Bekinal, S. I., T. R. Anil, S. Jana, S. S. Kulkarni, A. Sawant, N. Patil, and S. Dhond, "Permanent magnet thrust bearing: Theoretical and experimental results," Progress In Electromagnetics Research B, Vol. 56, 269-287, 2013.
doi:10.2528/PIERB13101602

3. Ravaud, R. and G. Lemarquand, "Halbach structures for permanent magnets bearings," Progress In Electromagnetic Research M, Vol. 14, 263-277, 2010.
doi:10.2528/PIERM10100401

4. Earnshaw, S., "On the nature of the molecular forces which regulate the constitution of the luminiferous ether," Transactions of the Cambridge Philosophical Society, Vol. 7, 97-112, 1842.

5. Sotelo, G. G., R. Andrade, and A. C. Ferreira, "Magnetic bearing sets for a flywheel system," IEEE Trans. on Applied Super Conductivity, Vol. 17, No. 2, 2150-2153, 2007.
doi:10.1109/TASC.2007.899268

6. Fang, J., Y. Le, J. Sun, and K. Wang, "Analysis and design of passive magnetic bearing and damping system for high-speed compressor," IEEE Trans. Magn., Vol. 48, No. 9, 2528-2537, 2012.
doi:10.1109/TMAG.2012.2196443

7. Morales, W., R. Fusaro, and A. Kascak, "Permanent magnetic bearing for spacecraft applications," Tribology Transactions, Vol. 46, No. 3, 460-464, 2003.
doi:10.1080/10402000308982651

8. Tian, L.-L., X.-P. Ai, and Y.-Q. Tian, "Analytical model of magnetic force for axial stack permanent-magnet bearings," IEEE Trans. Magn., Vol. 48, No. 10, 2592-2599, 2012.
doi:10.1109/TMAG.2012.2197635

9. Bekinal, S. I. and S. Jana, "Generalized three-dimensional mathematical models for force and stiffness in axially, radially, and perpendicularly magnetized passive magnetic bearings with `n' number of ring pairs," ASME Journal of Tribology, Vol. 138, No. 3, 031105(1–9), 2016.

10. Moser, R., J. Sandtner, and H. Bleuler, "Optimization of repulsive passive magnetic bearings," IEEE Trans. Magn., Vol. 42, No. 8, 2038-2042, 2006.
doi:10.1109/TMAG.2005.861160

11. Yoo, S. Y., et al. "Optimal design of non-contact thrust bearing using permanent magnet rings," Int. Journal of Precision Engg. and Manufacturing, Vol. 12, No. 6, 1009-1014, 2011.
doi:10.1007/s12541-011-0134-4

12. Lijesh, K. P. and H. Hirani, "Development of analytical equations for design and optimization of axially polarised radial passive magnetic bearing," ASME Journal of Tribology, Vol. 137, 011103(1–9), 2015.

13. Bekinal, S. I., M. R. Doddamani, and S. Jana, "Optimization of axially magnetised stack structured permanent magnet thrust bearing using three dimensional mathematical model," ASME Journal of Tribology, Vol. 139, No. 3, 031101(1-9), 2017.
doi:10.1115/1.4034533

14. Beneden, M. V., V. Kluyskens, and B. Dehez, "Optimal sizing and comparison of permanent magnet thrust bearings," IEEE Trans. Magn., Vol. 53, No. 2, 2017.