1. Luebbers, R., F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Trans. Electromagn. Compat., Vol. 32, 222-227, 1990.
doi:10.1109/15.57116
2. Computer Simulation Technology Microwave Studio, , https://www.cst.com/products/cstmws.
3. Stefanski, T. P., N. Chavannes, and N. Kuster, "Multi-GPU accelerated finite-difference time-domain solver in open computing language," PIERS Online, Vol. 7, 71-74, 2011.
4. Stefanski, T. P., N. Chavannes, and N. Kuster, "Parallelization of the FDTD method based on the open computing language and the message passing interface," Microwave Opt. Technol. Lett., Vol. 54, 785-789, 2012.
doi:10.1002/mop.26610
5. Zunoubi, M. R., J. Payne, and M. Knight, "FDTD multi-GPU implementation of Maxwell’s equations in dispersive media," Optical Interactions with Tissue and Cells XXII, Vol. 7897, 1-6, 2011.
6. Zunoubi, M. R., J. Payne, and W. P. Roach, "CUDA-MPI-FDTD implementation of Maxwell’s equations in general dispersive media," Optical Interactions with Tissue and Cells XXIII, Vol. 8221, 1-6, 2012.
7. Wahl, P., C. Debaes, J. V. Erps, N. Vermeulen, D. A. B. Miller, and H. Thienpont, "B-Calm: An open-source multi-GPU-based 3D-FDTD with multi-pole disperion for plasmonics," Progress In Electromagnetics Research, Vol. 138, 467-478, 2013.
doi:10.2528/PIER13030606
8. Baumeister, P. F., T. Hater, J. Kraus, D. Pleiter, and P. Wahl, "A performance model for GPU-accelerated FDTD applications," 2015 IEEE 22nd International Conference on High Performance Computing, 185-192, 2015.
9. Cannon, P. D. and F. Honary, "A GPU-accelerated finite-difference time-domain scheme for electromagnetic wave interaction with plasma," IEEE Trans. Antennas Propag., Vol. 63, 3042-3054, 2015.
doi:10.1109/TAP.2015.2423710
10. NVIDIA official, , websitehttp://www.nvidia.com.
11. Zhou, J., Y. Cui, E. Poyraz, D. J. Choi, and C. C. Guest, "Multi-GPU implementation of a 3D finite-difference time domain earthquake code on heterogenous supercomputers," International Conference on Computational Science, Vol. 18, 1255-1264, 2013.
12. NVIDIA CUDA C Programming Guide, Chapter 3.2, 19-58, available in http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#axzz4rGDZXQXi.
13. MathWorks official website, , https://www.mathworks.com.
14. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Bio., Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003
15. Christ, A., W. Kainz, E. G. Hahn, K. Honegger, M. Zefferer, E. Neufeld, W. Rascher, R. Janka, W. Bautz, J. Chen, B. K. P. Schmitt, H.-P. Hollenbach, J. Shen, M. Oberle, D. Szczerba, A. Kam, J. W. Guag, and N. Kuster, "The virtual family-development of surface-based anatomical models of two adults and two children for dosimetric simulations," Phys. Med. Biol., Vol. 55, 23-38, 2010.
doi:10.1088/0031-9155/55/2/N01
16. Hanawa, T., M. Kurosawa, and S. Ikuno, "Investigation on 3-D implicit FDTD method for parallel processing," IEEE Trans. Magnetics, Vol. 41, 1696-1699, 2005.
doi:10.1109/TMAG.2005.846066
17. Liao, Z. P., H. L. Wong, B. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," Scientia Sinica, Vol. 27, No. 10, 1063-1076, 1984.