Vol. 70
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-09-12
Coplanar Waveguide Band Reject Filter Using Electromagnetic Band Gap Structure
By
Progress In Electromagnetics Research Letters, Vol. 70, 53-58, 2017
Abstract
This paper presents design and analysis of six different configurations of Coplanar Waveguide Band Reject Filters (CPW-BRF) using Rectangular Dumbbell Electromagnetic Band Gap (RDEBG) cell structures. The performance in terms of rejection bandwidth, attenuation, cutoff characteristics of the proposed design are found superior to the earlier reported CPW-BRF. Using cascading of six RDEBG cells, rejection bandwidth has been improved up to 2.8 GHz with attenuation of -38.8 dB and filter selectivity of 26.9 dB/GHz. In addition, the radiation losses have also been analyzed by extracting equivalent R, L and C values from electromagnetic (EM) simulation results. Fabricated CPW-BRF using four RDEBG cells has been analyzed. For the fabricated CPW-BRF simulated and measured results are found in good agreement.
Citation
Makarand G. Kulkarni, Alice N. Cheeran, Kamla Prasan Ray, and Sandeepak Sadashiv Kakatkar, "Coplanar Waveguide Band Reject Filter Using Electromagnetic Band Gap Structure," Progress In Electromagnetics Research Letters, Vol. 70, 53-58, 2017.
doi:10.2528/PIERL17070204
References

1. Wen, C. P., "Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications," IEEE Trans. on Microwave Theory and Techniques, Vol. 17, No. 12, 1087-1090, 1969.
doi:10.1109/TMTT.1969.1127105

2. Pozar, D. M., Microwave Engineering, 4th Ed., John Wiley & Sons, 2012.

3. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, Vol. 58, No. 20, 2059-2062, May 1987.
doi:10.1103/PhysRevLett.58.2059

4. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, Vol. 58, No. 23, 2486-2489, June 1987.
doi:10.1103/PhysRevLett.58.2486

5. Ahn, D., J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Trans. Microwave Theory Tech., Vol. 49, 86-93, Jan. 2001.
doi:10.1109/22.899965

6. Killamsetty, V. K. and B. Mukherjee, "Compact wideband bandpass filter for TETRA band applications," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 7, 630-632, Jul. 2017.
doi:10.1109/LMWC.2017.2711515

7. Kumar, A. and A. K. Verma, "Extraction of T and PI circuit models of microstrip line with defected ground structure," International Conference on. Communications and Signal Processing (ICCSP), IEEE, 2011.

8. Dalili Oskouei, H., K. Forooraghi, and M. Hakkak, "Guided andleaky wave charactristics of periodic defectde ground structures," Progress In Electromagnetics Research, Vol. 73, 15-27, 2007.
doi:10.2528/PIER07031701

9. Martine, F., F. Falcone, J. Bonache, T. Lopetegi, M. A. G. Laso, and M. Sorolla, "Dual electromagnetic band-gap cpw structures for filter applications," IEEE Microwave Wireless Components Lett., Vol. 13, 393-395, Sep. 2003.
doi:10.1109/LMWC.2003.817149

10. Zoul, Y., X. Hu, S. He, and Z. Lin, "Compact coplanar waveguide lowpass filter using a novel electromagnetic bandgap structure," Proceedings of 7th International Symposium on Antennas Propagation & EM Theory, 1-4, 2006.

11. Yun, T. Y. and K. Chang, "Uniplanar one-dimensional photonic bandgap structures and resonators," IEEE Trans. Microwave Theory Tech., Vol. 49, 549-55, Mar. 2001.
doi:10.1109/22.910561

12. Lim, J.-S., C.-S. Kim, Y.-T. Lee, D. Ahn, and S. Nam, "A spiral-shaped defected ground structure for coplanar waveguide," IEEE Microw. Wireless Compon. Lett., Vol. 12, No. 9, 330-332, Sep. 2002.
doi:10.1109/LMWC.2002.803208

13. Lin, S.-Y., W.-Z. Tian, S.-Q. Zheng, and X.-W. Sun, "A semicircle DGS with high Q factor for microstrip line and low-pass filter," Proceedings of Asia-Pacific Microwave Conference, 1197-1199, 2006.

14. Kim, H.-M. and B. Lee, "Bandgap and slow/fast-wave characteristics of defected ground structures including left-handed features," IEEE Trans. Microw. Theory and Tech., Vol. 54, No. 7, 3113-3120, Jul. 2014.

15. Zeland Software Inc., IE3D Version 12, .

16. Smierzchalski, M., P. Kurgan, and M. Kitlinski, "Improved selectivity compact band-stop filter with gosper fractal-shaped defected ground structures," Microwave and Optical Technology Letters, Vol. 52, No. 1, 227-229, Jan. 2010.
doi:10.1002/mop.24869

17. Karmakar, N. C., "Improved performance of photonic band-gap microstrip structure with the use of Chebyshev distributions," Microwave and Optical Technology Letters, Vol. 33, No. 1, Apr. 1-5, 2002.