Vol. 70
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-08-31
Design of Dual-Band Bandpass Filter with Closely Spaced Passbands and Multiple Transmission Zeros
By
Progress In Electromagnetics Research Letters, Vol. 70, 45-51, 2017
Abstract
Two compact dual-band bandpass filters (BPFs) with closely spaced passbands are presented in this paper. Each of the filters consists of a stub loaded resonator, to which shorted lines are coupled. The ratio of the center frequencies of two passbands can be easily adjusted from 1.2 to 1.1 by changing the gap of the coupled line. In addition, seven transmission zeros (TZs) can be yielded to obtain high passband selectivity and enhance the out of band performances. As an example, two filters are designed, fabricated and measured. Both filters exhibit the merits of high passband selectivity, very low center frequency ratio, and wide stopband suppression.
Citation
Yang Xiong, Li Tian Wang, Wei Zhang, Fan Zhang, Doudou Pang, Ming He, Xinjie Zhao, and Lu Ji, "Design of Dual-Band Bandpass Filter with Closely Spaced Passbands and Multiple Transmission Zeros," Progress In Electromagnetics Research Letters, Vol. 70, 45-51, 2017.
doi:10.2528/PIERL17062801
References

1. Chen, W. Y., M. H. Weng, S. J. Chang, and H. Kuan, "A high selectivity dual-band filter using ring-like SIR with embedded coupled open stubs resonators," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14–15, 2011-2021, 2011.
doi:10.1163/156939311798072126

2. Liu, S., J. Xu, and Z. T. Xu, "Compact dual-band bandpass filters using complementary split-ring resonators with closely spaced passbands," Electronics Letters, Vol. 52, No. 15, 1312-1314, 2016.
doi:10.1049/el.2016.1176

3. Eun, J. W. and J. H. Lee, "A microstrip dual-band bandpass filter using feed line with SIR," IEICE Electronics Express, Vol. 14, No. 4, 1-7, 2017.
doi:10.1587/elex.14.20170022

4. Denis, B., K. J. Song, and F. Zhang, "Compact dual-band bandpass filter using open stub-loaded stepped impedance resonator with cross-slots," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 2, 269-274, 2016.
doi:10.1017/S1759078715001786

5. Belyaev, B. A., A. M. Serzhantov, and V. V. Tyurnev, "A miniature dual-band filter based on microstrip dual-mode resonators," Technical Physics Letters, Vol. 38, No. 9, 839-842, 2012.
doi:10.1134/S1063785012090180

6. Chen, D., L. Zhu, and C. H. Cheng, "A novel dual-band bandpass filter with closely spaced passbands," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 1, 38-40, 2014.
doi:10.1109/LMWC.2013.2288277

7. Wu, B., C. H. Liang, P. Y. Qin, and Q. Li, "Compact dual-band filter using defected stepped impedance resonator," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 10, 674-676, 2008.
doi:10.1109/LMWC.2008.2003459

8. Song, K. J., F. Zhang, and Y. Fan, "Miniaturized dual-band bandpass filter with good frequency selectivity using SIR and DGS," AEU-International Journal of Electronics and Communications, Vol. 68, No. 5, 384-387, 2014.
doi:10.1016/j.aeue.2013.10.005

9. Sun, S. J., T. Su, K. Deng, B. Wu, and C. H. Liang, "Compact microstrip dual-band bandpass filter using a novel stub-loaded quad-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 9, 465-467, 2014.
doi:10.1109/LMWC.2013.2274038

10. Liu, H. W., B. P. Ren, X. H. Guan, J. H. Lei, and S. Li, "Compact dual-band bandpass filter using quadruple-mode square ring loaded resonator (SRLR)," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 4, 181-183, 2014.

11. Xu, J., W. Wu, and C. Miao, "Compact and sharp skirts microstrip dual-mode dual-band bandpass filter using a single quadruple-mode resonator (QMR)," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 3, 1104-1113, 2013.
doi:10.1109/TMTT.2013.2238949

12. Matthaei, G., L. Young, and E. M. T. Jones, Microwave Filters Impedance-Matching Networks, and Coupling Structures, McGraw-Hill, 1964.