1. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
doi:10.1163/156939304774113089
2. Craddock, I. J., M. Donelli, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2012.
3. Rocca, P., M. Donelli, G. L. Gragnani, and A. Massa, "Iterative multi-resolution retrieval of non-measurable equivalent currents for the imaging of dielectric objects," Inverse Problems, Vol. 25, No. 5, 2009.
doi:10.1088/0266-5611/25/5/055004
4. Franceschini, G., M. Donelli, R. Azaro, and A. Massa, "Inversion of phaseless total field data using a two-step strategy based on the iterative multiscaling approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 12, 3527-3539, Dec. 2006.
doi:10.1109/TGRS.2006.881753
5. Franceschini, G., M. Donelli, R. Azaro, and A. Massa, "Inversion of phaseless total field data using a two-step strategy based on the iterative multiscaling approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 12, 3527-3539, 2006.
doi:10.1109/TGRS.2006.881753
6. Bolomey, J. C., "Recent european developments in active microwave imaging for industrial, scientific, and medical applications," IEEE T. Microw. Theory, No. 37, 2109-2117, Dec. 1989.
doi:10.1109/22.44129
7. Ram, S. S., Y. Li, A. Lin, and H. Ling, "Doppler-based detection and stacking of humans in indoor environments," Journal of the Franklin Institute --- Engineering and Applied Mathematics, Vol. 345, No. 6, 679-699, 2008.
doi:10.1016/j.jfranklin.2008.04.001
8. Le, C., T. Dogaru, L. Nguyen, and M. A. Ressler, "Ultrawideband (UWB) radar imaging of building interior: Measurements and predictions," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1409-1420, 2009.
doi:10.1109/TGRS.2009.2016653
9. National Breast Cancer Coalition (NBCC), URL: http://www.stopbreast- cancer.org, 2014.
10. Iddan, G., G. Meron, and A. Glukhovsky, "Wireless capsule endoscopy," Nature, Vol. 405, 417-417, May 2000.
doi:10.1038/35013140
11. Yujiri, L., "Passive millimeter wave imaging," IEEE MTT-S International Microwave Symposium, Vol. 4, 98-101, Jun. 2006.
12. Hu, C., L. Liu, and B. Sun, "Compact representation and panoramic representation for capsule endoscope images," Int. J. Inf. Acquisit., Vol. 6, 257-268, 2009.
doi:10.1142/S0219878909001989
13. Hwang, S. and M. Emre Celebi, "Polyp detection in wireless capsule endoscopy videos based on image segmentation and geometric feature," Proc. 2010 IEEE Int. Conf. Acoust. Speech Signal Process., 678-681, Mar. 2010.
doi:10.1109/ICASSP.2010.5495103
14. Atasoy, S., B. Glocker, S. Giannarou, D. Mateus, A.Meining, G. Yang, and N. Navab, "Probabilistic region matching in narrow-band endoscopy for targeted optical biopsy," Proc. MICCAI, 499-506, 2009.
15. Hwang, S., J. Oh, J. Cox, S. J. Tang, and H. F. Tibbals, "Blood detection in wireless capsule endoscopy using expectation maximization clustering," Proc. SPIE, Vol. 6144, 2006.
16. Tjoa, P. M. and M. S. Krishnan, "Feature extraction for the analysis of colon status from the endoscopic images," Biomed. Eng. Online, Vol. 2, 2003.
17. Igual, L., S. Segul, J. Vitria, F. Azpiroz, and P. Radeva, "Eigenmotion-based detection of intestinal contractions," Proc. CAIP, Springer LNCS, Vol. 4673, 293-300, 2007.
18. Gono, K., "Multifunctional endoscopic imaging system for support of early cancer diagnosis," IEEE J. Sel. Topics Quant. Electron, Vol. 14, No. 1, 62-69, Jan. 2008.
doi:10.1109/JSTQE.2007.913966
19. Gono, K., T. Obi, M. Yamaguchi, N. Ohyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, "Appearance of endhanced tissue features in narrow band endoscopic imaging," J. Biomed. Opt., Vol. 9, 568-577, May 2004.
doi:10.1117/1.1695563
20. Gono, K., K. Yamazaki, N. Doguchi, T. Nonami, T. Obi, M. Yamagichi, N. Ohyama, H. Machida, Y. Saono, S. Yoshida, Y. Hamamoto, and T. Endo, "Endoscopic observation of tissue by narrow band illumination," Opt. Rev., Vol. 10, 211-215, 2003.
doi:10.1007/s10043-003-0211-8
21. Li, B. and M. Q.-H. Meng, "Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection," IEEE Trans. on Information Technology in Biomedicine, Vol. 16, No. 3, 323-329, May 2012.
doi:10.1109/TITB.2012.2185807
22. Li, B. and M. Q.-H. Meng, "Computer aided detection of bleeding regions in capsule endoscopy images," IEEE Trans. Biomed. Eng., Vol. 56, No. 4, 1032-1039, Apr. 2009.
doi:10.1109/TBME.2008.2010526
23. Li, B. and M. Q.-H. Meng, "Texture analysis for ulcer detection in capsule endoscopy images," Image Vis. Comput., Vol. 27, No. 9, 1336-1342, Aug. 2009.
doi:10.1016/j.imavis.2008.12.003
24. Li, B. and M. Q.-H. Meng, "Computer-based detection of bleeding and ulcer in wireless capsule endoscopy images by chromaticity moments," Comput. Bilo. Med., Vol. 39, No. 2, 141-147, Feb. 2009.
doi:10.1016/j.compbiomed.2008.11.007
25. Kanaan, M. and M. Suveren, "In-body ranging for ultra-wide band wireless capsule endoscopy using a neural network architecture," 10th International Symposium on Medical Information and Communication Technology (ISMICT), 1-5, Worcester, USA, Mar. 20-23, 2016.
26. Kanaan, M. and M. Suveren, "Ranging for in-body localization of ultra wide band wireless endoscopy capsules using neural networks," 24th Signal Processing and Communication Application Conference, (SIU-2016), Zonguldak, Turkey, May 16-19, 2016.
27. Kanaan, M. and M. Suveren, "In-body ranging with ultra-wideband signals: Techniques and modeling of the ranging error," Wireless Communications and Mobile Computing, Vol. 2017, 1-15, 2017.
doi:10.1155/2017/4313748
28. Kanaan, M. and M. Suveren, "A novel frequency-dependent path loss model for ultra wideband implant body area networks," Measurement, Vol. 68, 117-127, 2015.
doi:10.1016/j.measurement.2015.02.040
29. Massa, A., A. Boni, and M. Donelli, "A classification approach based on SVM for electromagnetic sub-surface sensing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 9, 2084-2093, Sep. 2005.
doi:10.1109/TGRS.2005.853186
30. Donelli, M., F. Viani, P. Rocca, and A. Massa, "An innovative multi-resolution approach for DoA estimation based on a support vector classification," IEEE Trans. Antennas Propag., Vol. 57, No. 8, 2279-2292, Aug. 2009.
doi:10.1109/TAP.2009.2024485
31. Wang, L., Support Vector Machines: Theory and Applications, Springer-Verlag, 2005.
doi:10.1007/b95439
32. Jain, A. K. and D. Zongker, "Feature selection, evaluation, application, and small sample performance," IEEE Trans. PAMI, Vol. 19, No. 2, 153-158, Feb. 1997.
doi:10.1109/34.574797
33. Dash, M. and H. Liu, "Feature selection for classification," Intell. Data Anal., Vol. 1, 131-156, 1997.
doi:10.1016/S1088-467X(97)00008-5
34. Guyon, I., J. Westion, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines," Mach. Learn., Vol. 46, 389-422, 2002.
doi:10.1023/A:1012487302797
35. Lei, W., C. Huang, and Y. Su, "A real-time BP imaging algorithm in SPR application," IEEE International Geoscience and Remote Sensing Symposium, 1734-1737, 2005.
36. Ahmad, F., M. Amin, and S. Kassam, "A beamforming approach to stepped-frequency synthetic aperture through-the-wall radar imaging," IEEE International Workshop on Computational Advances in Multi-sensor Adaptive Processing, 24-27, 2005.
doi:10.1109/CAMAP.2005.1574174
37. Salucci, M., N. Anselmi, G. Oliveri, P. Calmon, R. Miorelli, C. Reboud, and A. Massa, "Real-time NDT-NDE through an innovative adaptive partial least squares SVR inversion approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 11, 6818-6832, Nov. 2016.
doi:10.1109/TGRS.2016.2591439
38. Sullivan, D. M., "Electromagnetic simulation using the FDTD method," IEEE Mircowave Theory and Techniques Society, 2000.
39. Chamma, W. A., "FDTD modeling of a realistic room for through-the-wall radar applications," International Journal of Numerical Modelling: Electronic Networks Devices and Fields, Vol. 22, No. 2, 159-174, 2009.
doi:10.1002/jnm.703
40. Vapnik, V. N., Estimation of Dependencies Based on Empirical Data, Springer-Verlag, 1982.
41. Vapnik, V. N., The Nature of Statistical Learning Theory, Springer-Verlag, 1995.
doi:10.1007/978-1-4757-2440-0
42. Vapnik, V. N., S. E. Golowich, and A. Smith, "Support vector method for function approximation, regression estimation and signal processing," Advances in Neural Information Processing Systems, Vol. 9, 281-287, 1997.
43. Cristianini, N. and J. S. Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, 2000.
doi:10.1017/CBO9780511801389
44. Smola, A. J., B. Scholkopf, and K. R. Muller, "The connection between regularization operators and support vector kernels," Neural Networks, Vol. 11, No. 4, 637-649, 1998.
doi:10.1016/S0893-6080(98)00032-X
45. Bermani, E., A. Boni, A. Kerhet, and A. Massa, "Kernels evaluation of SVM-based estimators for inverse scattering problems," Progress In Electromagnetics Research, Vol. 49, 372-375, 2007.
46. Suykens, J. A. and J. Vandewalle, "Recurrent least squares support vector machines," IEEE Transactions on Circuits Systems, Vol. 47, No. 7, 1109-1114, 2000.
doi:10.1109/81.855471
47. Xie, Y., B. Guo, and L. Xu, "Multistatic adaptive microwave imaging for early breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 53, No. 8, 1647-1657, 2006.
doi:10.1109/TBME.2006.878058