Vol. 60
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-09-22
Positive Definite Matrix Space Based Detector with Limited Training Samples for Multiple Target Situations
By
Progress In Electromagnetics Research M, Vol. 60, 141-156, 2017
Abstract
Multiple target situation is a typical situation of nonhomogeneous clutter environment, which can cause excessive target masking in radar signal detection system. In order to reduce target masking caused by multiple target situations, this paper proposes a new detection structure based on positive-de nite matrix space and limited training samples. The proposed detection structure uses a positive-de nite matrix to estimate the background power level. In addition, with limited training samples, the detection structure is used to resist the multiple target situations. The simulation results show that the proposed detection structure exhibits a better detection performance than that of the well-known CA-CFAR in homogeneous environment. The detector also performs robustly in multiple target situations, even though 10 interfering targets exist in a length of 24 samples of reference window. Furthermore, the measured results validate the performance of the proposed method.
Citation
Wen Jiang, Yulin Huang, Guolong Cui, and Jianyu Yang, "Positive Definite Matrix Space Based Detector with Limited Training Samples for Multiple Target Situations," Progress In Electromagnetics Research M, Vol. 60, 141-156, 2017.
doi:10.2528/PIERM17062003
References

1. Seidel, C., I. Schwartz, and P. Kielhorn, "Helicopter collision avoidance and brown-out recovery with HELLAS," Proceedings of the SPIE Europe Security and Defence, International Society for Optics and Photonics, 71140G, Cardiff, UK, 2008.

2. Lynch, D., Introduction to RF Stealth, Scitech Publishing, 2004.

3. Skolnick, M., Radar Handbook, McGraw-Hill Companies, 2008.

4. Malaek, S. and A. Kosari, "Novel minimum time trajectory planning in terrain following flights," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, 2-12, 2007.
doi:10.1109/TAES.2007.357150

5. Malaek, S. and A. Kosari, "Dynamic based cost functions for TF/TA flights," IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, 44-63, 2012.
doi:10.1109/TAES.2012.6129620

6. Finn, H. and R. Johnson, "Adaptive detection mode with threshold control as a function of spatially sampled clutter-level estimates," RCA Review, Vol. 29, 414-464, 1968.

7. Liu, N. N., J. W. Li, and Y. F. Cui, "A new detection algorithm based on CFAR for radar image with homogeneous background," Progress In Electromagnetics Research C, Vol. 15, 13-22, 2010.
doi:10.2528/PIERC10061201

8. Weiss, M., "Analysis of some modified cell-averaging CFAR processors in multiple-target situations," IEEE Transactions on Aerospace and Electronic Systems, Vol. 18, 102-114, 1982.
doi:10.1109/TAES.1982.309210

9. Magaz, B., A. Belouchrani, and M. Hamadouche, "Automatic threshold selection in OS-CFAR radar detection using information theoretic criteria," Progress In Electromagnetics Research B, Vol. 30, 157-175, 2011.
doi:10.2528/PIERB10122502

10. Khalighi, M. A. and M. H. Bastani, "Adaptive CFAR processor for nonhomogeneous environments," IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, 889-897, 2000.
doi:10.1109/7.869508

11. Sarma, A. and D. W. Tufts, "Robust adaptive threshold for control of false alarms," Signal Processing Letters, IEEE, Vol. 8, 261-263, 2001.
doi:10.1109/97.948451

12. Tabet, L. and F. Soltani, "A generalized switching CFAR processor based on test cellstatistics," Signal, Image and Video Processing, Vol. 3, 265-273, 2009.
doi:10.1007/s11760-008-0075-2

13. Kim, J. H. and M. R. Bell, "A computationally efficient CFAR algorithm based on a goodness-of-fit test for piecewise homogeneous environments," IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, 1519-1535, 2013.
doi:10.1109/TAES.2013.6558002

14. Maio, A. D., A. Farina, and G. Foglia, "Design and experimental validation of knowledge-based constant false alarm rate detectors," Radar, Sonar & Navigation, IET, Vol. 1, 308-316, 2007.
doi:10.1049/iet-rsn:20060113

15. Wang, W., Y. Ji, and X. Lin, "A novel fusion-based ship detection method from pol-SAR images," Sensors, Vol. 15, 25072-25089, 2015.
doi:10.3390/s151025072

16. Hammoudi, Z. and F. Soltani, "Distributed CA-CFAR and OS-CFAR detection using fuzzy spaces and fuzzy fusion rules," Radar, Sonar and Navigation, IEE Proceedings, IET, Vol. 151, 135-142, 2004.
doi:10.1049/ip-rsn:20040560

17. Cao, T. T., "Constant false-alarm rate algorithm based on test cell information," Radar, Sonar & Navigation, IET, Vol. 2, 200-213, 2008.
doi:10.1049/iet-rsn:20070133

18. Boudemagh, N. and Z. Hammoudi, "Automatic censoring CFAR detector for heterogeneous environments," AEU-International Journal of Electronics and Communications, Vol. 68, 1253-1260, 2014.
doi:10.1016/j.aeue.2014.07.006

19. Berbra, K., M. Barkat, and A. Anou, "PN code acquisition using smart antenna and adaptive thresholding CFAR based on ordered data variability for CDMA communications," Progress In Electromagnetics Research B, Vol. 57, 139-155, 2014.
doi:10.2528/PIERB13092403

20. Gini, F. and M. Rangaswamy, Knowledge Based Radar Detection, Tracking and Classification, John Wiley & Sons, 2008.
doi:10.1002/9780470283158

21. Jiang, W., Y. Huang, and J. Yang, "Automatic censoring CFAR detector based on ordered data difference for low-flying helicopter safety," Sensors, Vol. 16, 1055, 2016.
doi:10.3390/s16071055

22. Trunk, G. V., "Range resolution of targets using automatic detectors," IEEE Transactions on Aerospace and Electronic Systems, Vol. 14, 750-755, 1978.
doi:10.1109/TAES.1978.308625

23. Smith, M. E. and P. K. Varshney, "Intelligent CFAR processor based on data variability," IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, 837-847, 2000.
doi:10.1109/7.869503

24. Tan, Y., Q. Li, Y. Li, and J. Tian, "Aircraft detection in high-resolution SAR images based on a gradient textural saliency map," Sensors, Vol. 15, 23071-23094, 2015.
doi:10.3390/s150923071

25. Rohling, H., "Radar CFAR thresholding in clutter and multiple target situations," IEEE Transactions on Aerospace and Electronic Systems, Vol. 19, 608-621, 1983.
doi:10.1109/TAES.1983.309350

26. Gandhi, P. P. and S. A. Kassam, "Analysis of CFAR processors in nonhomogeneous background," IEEE Transactions on Aerospace and Electronic Systems, Vol. 24, 427-445, 1988.
doi:10.1109/7.7185

27. Rickard, J. T. and G. M. Dillard, "Adaptive detection algorithms for multiple-target situations," IEEE Transactions on Aerospace and Electronic Systems, Vol. 13, 338-343, 1977.
doi:10.1109/TAES.1977.308466

28. Himonas, S. D. and M. Barkat, "Automatic censored CFAR detection for nonhomogeneous environments," IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, 286-304, 1992.
doi:10.1109/7.135454

29. Farrouki, A. and M. Barkat, "Automatic censoring CFAR detector based on ordered data variability for nonhomogeneous environments," Radar, Sonar and Navigation, IEE Proceedings, IET, Vol. 152, 43-51, 2005.
doi:10.1049/ip-rsn:20045006

30. Zaimbashi, A. and Y. Norouzi, "Automatic dual censoring cell-averaging CFAR detector in nonhomogenous environments," Signal Processing, Vol. 88, 2611-2621, 2008.
doi:10.1016/j.sigpro.2008.04.016

31. Kononov, A. A., J. H. Kim, J. K. Kim, and G. Kim, "A new class of adaptive CFAR methods for nonhomogeneous environments," Progress In Electromagnetics Research B, Vol. 64, 145-170, 2015.
doi:10.2528/PIERB15091603

32. Arnaudon, M., L. Yang, and F. Barbaresco, "Stochastic algorithms for computing p-means of probability measures, geometry of radar Toeplitz covariance matrices and applications to HR Doppler processing," Radar Symposium (IRS), 2011 Proceedings International, 651-656, 2011.

33. Arnaudon, M., F. Barbaresco, and L. Yang, "Riemannian medians and means with applications to radar signal processing," IEEE Journal of Selected Topics in Signal Processing, Vol. 7, 595-604, 2013.
doi:10.1109/JSTSP.2013.2261798

34. Aubry, A., A. D. Maio, L. Pallotta, and A. Farina, "Covariance matrix estimation via geometric barycenters and its application to radar training data selection," Radar, Sonar & Navigation, IET, Vol. 7, 600-614, 2013.
doi:10.1049/iet-rsn.2012.0190

35. Aubry, A., A. D. Maio, L. Pallotta, and A. Farina, "Median matrices and their application to radar training data selection," Radar, Sonar & Navigation, IET, Vol. 8, 265-274, 2013.
doi:10.1049/iet-rsn.2013.0043

36. Li, N., G. Cui, X. Yang, and L. Kong, "Performance assessment for geometric-based covariance estimation in heterogeneous clutter," IET International Radar Conference, 1-5, 2015.

37. Cui, G., N. Li, L. Pallotta, G. Foglia, and L. Kong, "Geometric barycenters for covariance estimation in compound gaussian clutter," Radar, Sonar & Navigation, IET, Vol. 11, 404-409, 2017.
doi:10.1049/iet-rsn.2016.0092

38. Weinberg, G. V., Radar Detection Theory of Sliding Window Processes, CRC Press, 2017.
doi:10.1201/9781315154015

39. Sanz-Gonzalez, J. L. and F. Alvarez-Vaquero, "Nonparametric rank detectors under K-distributed clutter in radar applications," Aerospace and Electronic Systems, IEEE Transactions on, Vol. 41, 702-710, 2005.
doi:10.1109/TAES.2005.1468759

40. Maio, A. D. and M. S. Greco, Modern Radar Detection Theory, SciTech Publishing, 2016.

41. Orlando, D., F. Bandiera, and G. Ricci, "Advanced Radar Detection Schemes Under Mismatched Signal Models," Morgan and Claypool Publishers, 2009.

42. Maio, A. D., "Rao test for adaptive detection in gaussian interference with unknown covariance matrix," IEEE Transactions on Signal Processing, Vol. 55, 3577-3584, 2007.
doi:10.1109/TSP.2007.894238

43. Richards, M. A., J. A. Scheer, and W. A. Holm, Principles of Modern Radar: Basic Principles, SciTech Publishing, 2010.
doi:10.1049/SBRA021E

44. Wang, C., M. Liao, and X. Li, "Ship detection in SAR image based on the alpha-stable distribution," IEEE Signal Processing Letters, Vol. 8, 4948-4960, 2008.

45. Meng, X., "Performance analysis of ordered-statistic greatest of-constant false alarm rate with binary integration for M-sweeps," Radar, Sonar & Navigation, IET, Vol. 4, 37-48, 2010.
doi:10.1049/iet-rsn.2008.0119

46. Pourmottaghi, A., M. Taban, and S. Gazor, "A CFAR detector in a nonhomogenous Weibull clutter," Aerospace and Electronic Systems, IEEE Transactions on, Vol. 48, 1747-1758, 2012.
doi:10.1109/TAES.2012.6178094

47. Weinberg, G. V., "Asymptotic performance of the geometric mean detector in pareto distributed clutter," IEEE Signal Processing Letters, Vol. 23, 1538-1542, 2016.
doi:10.1109/LSP.2016.2602362

48. Habib, M. A., M. Barkat, B. Aissa, and T. A. Denidni, "CA-CFAR detection performance of radar targets embedded in ‘non centered chi-2 gamma’ clutter," Progress In Electromagnetics Research, Vol. 88, 135-148, 2008.
doi:10.2528/PIER08092203

49. Gao, Y., R. Zhan, J. Wan, J. Hu, and J. Zhang, "CFAR target detection in ground SAR image based on KK distribution," Progress In Electromagnetics Research, Vol. 139, 721-742, 2013.
doi:10.2528/PIER13031602

50. Kong, L. J., X. Y. Peng, and T. X. Zhang, "A homogenous reference cells selector for CFAR detector in highly heterogeneous environment," Progress In Electromagnetics Research C, Vol. 41, 175-188, 2013.
doi:10.2528/PIERC13052604

51. Yang, M., G. Zhang, C. Guo, and M. Sun, "A coarse-to-fine approach for ship detection in SAR image based on CFAR algorithm," Progress In Electromagnetics Research M, Vol. 35, 105-111, 2014.
doi:10.2528/PIERM14012201

52. Cui, G., A. Maio, V. Carotenuto, and L. Pallotta, "Performance prediction of the incoherent detector for a weibull fluctuating target," IEEE Transactions on Aerospace and Electronic Systems, Vol. 50, 2176-2184, 2014.
doi:10.1109/TAES.2014.130040

53. Cui, G., A. D. Maio, and M. Piezzo, "Performance prediction of the incoherent radar detector for correlated generalized Swerling-chi fluctuating targets," IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, 356-368, 2013.
doi:10.1109/TAES.2013.6404108

54. El Mashade, M. B., "Analysis of CFAR detection of fluctuating targets," Progress In Electromagnetics Research C, Vol. 2, 65-94, 2008.
doi:10.2528/PIERC08020802