Vol. 69
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2017-08-08
A Simple Bandpass Filter with Independently Tunable Center Frequency and Bandwidth
By
Progress In Electromagnetics Research Letters, Vol. 69, 113-118, 2017
Abstract
A varactor-tuned microstrip bandpass filter (BPF) with independently tunable center frequency and bandwidth is proposed in this paper. The proposed BPF with a simple configuration is composed of a half-wavelength transmission line with both ends short-ended and a T-shaped transmission line. Meanwhile, two varactors are inserted symmetrically in the middle section of the half-wavelength transmission line to adjust the resonant frequency. The T-shaped transmission line is connected to the half-wavelength transmission line by a lumped capacitor. In addition, two inductors loaded symmetrically in the feed line are employed to control the coupling coefficient. It is convenient to adjust the frequency and bandwidth of the filter independently by using only three varactors, which simplifies the circuit structure greatly. The predicted results on S parameters are compared with the measured ones, and a reasonable agreement is achieved.
Citation
Bo Zhou, Jing-Pan Song, Feng Wei, and Xiao-Wei Shi, "A Simple Bandpass Filter with Independently Tunable Center Frequency and Bandwidth," Progress In Electromagnetics Research Letters, Vol. 69, 113-118, 2017.
doi:10.2528/PIERL17061502
References

1. Wang, X.-G., Y.-H. Choand, and S.-W. Yun, "A tunable combline bandpass filter loaded with series resonator," IEEE Trans. on Microw. Theory and Tech., Vol. 60, No. 6, 1569-1576, 2012.
doi:10.1109/TMTT.2012.2189123

2. Cheng, C.-C. and G. M. Rebeiz, "A three-pole 1.2-2.6-GHz RF MEMS tunable notch filter with 40-dB rejection and bandwidth control," IEEE Trans. on Microw. Theory and Tech., Vol. 60, No. 8, 2431-2438, 2012.
doi:10.1109/TMTT.2012.2198231

3. Yang, T. and G. M. Rebeiz, "Tunable 1.25-2.1-GHz 4-pole bandpass filter with intrinsic transmission zero tuning," IEEE Trans. on Microw. Theory and Tech., Vol. 63, No. 5, 1569-1578, 2015.
doi:10.1109/TMTT.2015.2409061

4. Chiou, Y.-C. and G. M. Rebeiz, "A tunable three-pole 1.5-2.2GHz bandpass filter with bandwidth and transmission zero control," IEEE Trans. on Microw. Theory and Tech., Vol. 59, No. 11, 2872-2878, 2011.
doi:10.1109/TMTT.2011.2164619

5. Renedo, M. S. and R. G. Garcia, "A tunable combline filter with continuous control of center frequency and bandwidth," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 1, 191-199, 2005.
doi:10.1109/TMTT.2004.839309

6. Wang, Y., F. Wei, H. Xu, and X.-W. Sh, "A tunable 1.4-2.5GHz bandpass filter based on single mode," Progress In Electromagnetics Research, Vol. 135, 261-269, 2013.
doi:10.2528/PIER12111704

7. Chiou, Y.-C. and G. M. Rebeiz, "Tunable 1.55-2.1GHz 4-pole elliptic bandpass filter with bandwidth control and > 50 dB rejection for wireless systems," IEEE Trans. on Microw. Theory and Tech., Vol. 61, No. 1, 117124, 2013.
doi:10.1109/TMTT.2012.2227789

8. Huang, X.-G., J.-Q. Zhang, Y.-Q. Lin, and Q.-Y. Xiang, "Design of a six-pole tunable band-pass filter with constant absolute bandwidth," 2016 Progress in Electromagnetic Research Symposium (PIERS), 3507-3510, Shanghai, China, August 8-11, 2016.

9. Zhang, X., C. Chen, M. Li, W. Chen, and J. Cai, "Tunable tri-band bandpass filter using varactor-tuned stub-loaded resonators," 2016 Progress in Electromagnetic Research Symposium (PIERS), 4228-4232, Shanghai, China, August 8-11, 2016.