Vol. 59
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-08-15
Inverse Scattering of a Conducting Cylinder in Free Space by Modified Fireworks Algorithm
By
Progress In Electromagnetics Research M, Vol. 59, 135-146, 2017
Abstract
In this paper, the inverse scattering of a conducting cylinder is given by modified fireworks algorithm. Initially, the direct scattering is formulated as an integral equation, which contains the target shape function. The scattering integral equation is then solved by the moment method. To achieve image reconstruction, the target shape function is expanded as a Fourier series. The inverse scattering is transformed into a nonlinear optimization problem. The variables are Fourier series coefficients of the target shape function. The objective function is defined by comparing the scattered electric fields of guessed and true shapes. This nonlinear optimization problem is then optimized by our modified fireworks algorithm. The fireworks algorithm is a novel swarm intelligence algorithm for global optimization. It is inspired by practical fireworks explosion. In this paper, it is suitably modified so that it can treat the inverse scattering problem with fast convergence. Numerical results show that the inverse scattering based on our modified fireworks algorithm can accurately reconstruct the target shape with fast convergence.
Citation
Kun-Chou Lee, "Inverse Scattering of a Conducting Cylinder in Free Space by Modified Fireworks Algorithm," Progress In Electromagnetics Research M, Vol. 59, 135-146, 2017.
doi:10.2528/PIERM17061101
References

1. Lewis, R. M., "Physical optics inverse diffraction," IEEE Transactions on Antennas and Propagation, Vol. 17, 308-314, 1969.
doi:10.1109/TAP.1969.1139417

2. Farhat, N. H., T. Dzekov, and E. Ledet, "Computer simulation of frequency swept imaging," Proceedings of the IEEE, Vol. 64, 1453-1454, 1976.
doi:10.1109/PROC.1976.10354

3. Chi, C. and N. H. Farhat, "Frequency swept tomographic imaging of three-dimensional perfectly conducting objects," IEEE Transactions on Antennas and Propagation, Vol. 29, 312-319, 1981.
doi:10.1109/TAP.1981.1142571

4. Bojarski, N. N., "A survey of the physical optics inverse scattering identity," IEEE Transaction on Antennas and Propagation, Vol. 30, 980-989, 1982.
doi:10.1109/TAP.1982.1142890

5. Ge, D. B., "A study of the Lewis method for target-shape reconstruction," Inverse Problems, Vol. 6, 363-370, 1990.
doi:10.1088/0266-5611/6/3/006

6. Roger, A., "Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem," IEEE Transactions on Antennas and Propagation, Vol. 29, 980-989, 1981.
doi:10.1109/TAP.1981.1142588

7. Kirsch, A., R. Kress, P. Monk, and A. Zinn, "Two methods for solving the inverse acoustic scattering problem," Inverse Problems, Vol. 4, 749-770, 1988.
doi:10.1088/0266-5611/4/3/013

8. Colton, D. and P. Monk, "A new method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium," Inverse Problems, Vol. 5, 1013-1026, 1989.
doi:10.1088/0266-5611/5/6/009

9. Otto, G. P. and W. C. Chew, "Microwave inverse scattering-local shape function imaging for improved resolution of strong scatterers," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 137-141, 1994.
doi:10.1109/22.265541

10. Hettlich, F., "Two method for solving an inverse conductive scattering problem," Inverse Problems, Vol. 10, 375-385, 1994.
doi:10.1088/0266-5611/10/2/012

11. Chiu, C. C. and P. T. Liu, "Image reconstruction of a perfectly conducting cylinder by the genetic algorithm," IEE Proceedings - Microwaves, Antennas and Propagation, Vol. 143, 253-259, 1996.
doi:10.1049/ip-map:19960363

12. Tan, Y. and Y. Zhu, "Fireworks algorithm for optimization," International Conference on Swarm Intelligence (ICSI’2010), Beijing, China, June 12-15, 2010.

13. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, 397-407, 2004.
doi:10.1109/TAP.2004.823969

14. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.

15. Harrington, R. F., Field Computation by Moment Methods, Macmillan, 1968.

16. Oppenheim, A. V., R. W. Schafer, and J. R. Buck, Discrete-time Signal Processing, Prentice Hall, 1999.

17. Bartels, R. H., J. C. Beatty, and B. A. Barsky, Hermite and Cubic Spline Interpolation, Morgan Kaufmann, 1998.

18. Rocca, P. and A. F. Morabito, "Optimal synthesis of reconfigurable planar arrays with simplified architectures for monopulse radar applications," IEEE Transactions on Antennas and Propagation, Vol. 63, 1048-1058, 2015.
doi:10.1109/TAP.2014.2386359

19. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa, "On quantitative microwave tomography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.
doi:10.2528/PIER09080604

20. Bucci, O. M. and G. Franceschetti, "On the degrees of freedom of scattered fields," IEEE Transactions on Antennas and Propagation, Vol. 37, 918-926, 1989.
doi:10.1109/8.29386

21. Lee, K. C., "Genetic algorithms based analyses of nonlinearly loaded antenna arrays including mutual coupling effects," IEEE Transactions on Antennas and Propagation, Vol. 51, 776-781, 2003.
doi:10.1109/TAP.2003.814736

22. Kirkpatrick, S., C. D. Gelatt Jr., and M. P. Vecchi, "Optimization by simulated annealing," Science, Vol. 220, 671-680, 1983.
doi:10.1126/science.220.4598.671