Vol. 59
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-08-14
Transients in Ultra-High-Speed Generators of Micro-Sized Gas Turbines
By
Progress In Electromagnetics Research M, Vol. 59, 123-133, 2017
Abstract
The article presents a research of the effect of different types of short circuits (SC) on the performance of the gas turbine and ultra-high-speed microgenerator (MG) in a wide frequency range (from 200 000 rpm to 1,000,000 rpm) at a power from 10 W to 1 kW. The studies are carried out on a specific two-pole 100 W, 500,000 rpm microgenerator with permanent magnets with a toroidal winding. The research is carried out by finite element method using Ansys Maxwell software. Numerical study by the finite element method is performed at the rated operation mode and various types of short circuits: single-phase, two-phase, three-phase circuits coil inside MG. By the results of these studies, we estimate a negative impact of different types of faults on the parameters of MG and the mechanical characteristics of the gas turbine. Also we consider various options MG with SC for various types of bearings. Then, using the full-sized 100 W sample we carried out experimental studies of the MG operation in nominal operation mode at the 500,000 rpm. That allows to verify the developed computer model and confirm the results of our practice research. The obtained results can be used in the aerospace industry for design the high reliability complexes such as new energy systems for satellite power supply, unmanned aerial vehicles and microturbines. In addition, it can be used to design the ultra-high-voltage electric machines with a high fault tolerance for the compressor plants, air supply systems of hydrogen fuel cells, new medical tools and machine tools.
Citation
Flur Rashitovich Ismagilov, Viacheslav Vavilov, Ilnar I. Yamalov, and Valentina V. Ayguzina, "Transients in Ultra-High-Speed Generators of Micro-Sized Gas Turbines," Progress In Electromagnetics Research M, Vol. 59, 123-133, 2017.
doi:10.2528/PIERM17060602
References

1. Ismagilov, F. R., I. Kh. Khayrullin, V. Ye. Vavilov, V. I. Bekuzin, and V. V. Ayguzina, "Increasing energy parameters of high-speed magneto-electric generator for autonomous objects," International Review of Aerospace Engineering (I.R.E.A.S.E.), Vol. 10, No. 2, 74-80, 2017.

2. Oyama, J., T. Higuchi, T. Abe, K. Shigematm, X. Yang, and E. Matsuo, "A trial production of small size ultra-high speed drive system," IEMDC 2003, Vol. 1, No. 2-1-1, 31-36, 2003.

3. Bailey, C., D. Saban, and P. Guedes-Pinto, "Design of high-speed direct-connected permanent-magnet motors and generators for the petrochemical industry," IEEE Transactions on Industry Applications, Vol. 45, No. 3, 1159-1165, 2009.
doi:10.1109/TIA.2009.2018964

4. Abdi, B., J. Milimonfared, and J. Moghani, "Simplified design and optimization of slotless synchronous PM machine for micro-satellite electro-mechanical batteries," Advances in Electrical and Computer Engineering, Vol. 9, No. 3, 84-88, 2009.
doi:10.4316/aece.2009.03015

5. Nagorny, A., N. Dravid, R. Jansen, and B. Kenny, "Design aspects of a high speed permanent magnet synchronous motor/generator for flywheel applications,", NASA/TM-2005-213651, 1-7, 2005.

6. Besnard, J.-P., F. Biais, and M. Martinez, "Electrical rotating machines and power electronics for new aircraft equipment systems," ICAS-Secretariat - 25th Congress of the International Council of the Aeronautical Sciences, 1-9, 2006.

7. Borisavljevic, A., "Limits, modeling and design of high-speed permanent magnet machines,", Printed by Wormann Print Service, Zutphen, the Netherlands, 2011.

8. Zwyssig, C., J. W. Kolar, W. Thaler, and M. Vohrer, "Design of a 100 W, 500000 rpm permanent-magnet generator for mesoscale gas turbines," Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), Vol. 1, 253-260, Hong Kong, 2005.

9. Zwyssig, C. and J. W. Kolar, "Round mega-speed drive systems: pushing beyond 1 million rpm," Mechatronics, IEEE/ASME Transactions, Vol. 14, No. 5, 564-574, 2009.
doi:10.1109/TMECH.2008.2009310

10. Krähenbühl, D., C. Zwyssig, H. Weser, and J. W. Kolar, "A miniature 500000-r/min electrically driven turbocompressor," IEEE Transactions on Industry Applications, Vol. 46, No. 6, 2459-2466, 2010.
doi:10.1109/TIA.2010.2073673

11. Zwyssig, C., S. D. Round, and J. W. Kolar, "Power electronics interface for a 100W, 500000 rpm gas turbine portable power unit," Applied Power Electronics Conference, 283-289, Dallas, Texas, USA, March 2006.

12. Isomura, K., M. Murayama, S. Teramoto, K. Hikichi, Y. Endo, S. Togo, and S. Tanaka, "Experimental verification of the feasibility of a 100 W class micro-scale gas turbine at an impeller diameter of 10 mm," J. Micromech. Microeng, Vol. 16, 254-261, 2006.
doi:10.1088/0960-1317/16/9/S13

13. Guidez, J., Y. Ribaud, O. Dessornes, T. Courvoisier, C. Dumand, T. Onishi, and S. Burguburu, "Micro gas turbine research at Onera," International Symposium on Measurement and Control in Robotics, Brussels, Belgium, 2005.

14. Park, C. H., S. K. Choi, and S. Y. Ham, "Design and experiment of 400,000 rpm high speed rotor and bearings for 500 W class micro gas turbine generator," International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS), 1-4, Daejeon, 2011.

15. Zwyssig, C., S. D. Round, and J. W. Kolar, "An ultrahigh-speed, low power electrical drive system," IEEE Transactions on Industrial Electronics, Vol. 55, No. 2, 577-585, 2008.
doi:10.1109/TIE.2007.911950

16. Uzhegov, N., E. Kurvinen, J. Nerg, J. T. Sopanen, and S. Shirinskii, "Multidisciplinary design process of a 6-slot 2-pole high-speed permanent-magnet synchronous machine," IEEE Transactions on Industrial Electronics, Vol. 63, No. 2, 174-178, 2016.
doi:10.1109/TIE.2015.2477797

17. Huynh, C., L. Zheng, and D. Acharya, "Losses in high speed permanent magnet machines used in microturbine applications," J. of Engineering for Gas Turbines and Power, Vol. 131, No. 2, 1-6, 2009.
doi:10.1115/1.2982151

18. Ismagilov, F., I. Khairullin, V. Vavilov, R. Karimov, and A. Gorbunov, "Features of designing high-rpm electromechanical energy converters operating in short-term mode with high-coercivity permanent magnets," International Review of Electrical Engineering, Vol. 11, No. 1, 28-35, 2016.

19. Zhang, T., X. Ye, H. Zhang, and H. Jia, "Strength design on permanent magnet rotor in high speed motor using finite element method," Telkomnika Indonesian Journal of Electrical Engineering, Vol. 12, No. 3, 1758-1763, 2014.

20. Tuysuz, A., M. Steichen, C. Zwyssig, and J. W. Kolar, "Advanced cooling concepts for ultra-high-speed machines," 9th International Conference on Power Electronics - ECCE Asia: ``Green World with Power Electronics'', ICPE 2015-ECCE Asia, 7168081, 2194-2202, 2015.

21. Zhang, Z., C. Xia, Y. Yan, Q. Geng, and T. Shi, "A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines," Journal of Magnetism and Magnetic Materials, Vol. 435, 136-145, 2017.
doi:10.1016/j.jmmm.2017.03.036

22. Wang, W., J. Zhang, and M. Cheng, "Common model predictive control for permanent-magnet synchronous machine drives considering single-phase open-circuit fault," IEEE Transactions on Power Electronics, Vol. 32, No. 7, 5862-5872, 2016.
doi:10.1109/TPEL.2016.2621745

23. Li, X. M., Z. X. Yang, Y. B. Li, W. Chen, and L. P. Zhang, "Performance analysis of permanent magnet synchronous generators for wind energy conversion system," International Conference on Advanced Mechatronic Systems, (ICAMechS), 544-549, 2016.
doi:10.1109/ICAMechS.2016.7813507