Vol. 61
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-10-25
Comparative Analysis of Basic Models and Artificial Neural Network Based Model for Path Loss Prediction
By
Progress In Electromagnetics Research M, Vol. 61, 133-146, 2017
Abstract
Propagation path loss models are useful for the prediction of received signal strength at a given distance from the transmitter; estimation of radio coverage areas of Base Transceiver Stations (BTS); frequency assignments; interference analysis; handover optimisation; and power level adjustments. Due to the differences in: environmental structures; local terrain profiles; and weather conditions, path loss prediction model for a given environment using any of the existing basic empirical models such as the Okumura-Hata's model has been shown to differ from the optimal empirical model appropriate for such an environment. In this paper, propagation parameters, such as distance between transmitting and receiving antennas, transmitting power and terrain elevation, using sea level as reference point, were used as inputs to Artificial Neural Network (ANN) for the development of an ANN based path loss model. Data were acquired in a drive test through selected rural and suburban routes in Minna and environs as dataset required for training ANN model. Multilayer perceptron (MLP) network parameters were varied during the performance evaluation process, and the weight and bias values of the best performed MLP network were extracted for the development of the ANN based path loss models for two different routes, namely rural and suburban routes. The performance of the developed ANN based path loss model was compared with some of the existing techniques and modified techniques. Using Root Mean Square Error (RMSE) obtained between the measured and the model outputs as a measure of performance, the newly developed ANN based path loss model performed better than the basic empirical path loss models considered such as: Hata; Egli; COST-231; Ericsson models and modified path loss approach.
Citation
Julia Ofure Eichie, Onyedi David Oyedum, Moses Ajewole, and Abiodun Musa Aibinu, "Comparative Analysis of Basic Models and Artificial Neural Network Based Model for Path Loss Prediction," Progress In Electromagnetics Research M, Vol. 61, 133-146, 2017.
doi:10.2528/PIERM17060601
References

1. Reddy, B. M., "Physics of the troposphere," Handbook on Radio Propagation for Tropical and Subtropical Countries, URSI Committee on Developing Countries, UNESCO Subvention, 59-77, New Delhi, 1987.

2. Isabona, J., C. C. Konyeha, C. B. Chinule, and G. P. Isaiah, "Radio field strength propagation data and path loss calculation methods in UMTS network," Advances in Physics Theories and Applications, Vol. 21, 54-68, 2013.

3. Ekpenyong, M., S. Robinson, and J. Isabona, "Macrocellular propagation prediction for wireless communications in urban environments," JCS & T, Vol. 10, No. 3, 130-136, 2010.

4. Faruk, N., A. Ayeni, and Y. A. Adediran, "On the study of empirical pathloss models for accurate prediction of Tv signal for secondary users," Progress In Electromagnetics Research B, Vol. 49, 155-176, 2013.
doi:10.2528/PIERB13011306

5. Nwalozie, G. C., S. U. Ufoaroh, C. O. Ezeagwu, and A. C. Ejiofor, "Pathloss prediction for GSM mobile networks for urban region of Aba, South-East, Nigeria," International Journal of Computer Science and Mobile Computing, Vol. 3, No. 2, 267-281, 2014.

6. Bakinde, N. T., N. Faruk, A. A. Ayeni, M. Y. Muhammad, and M. I. Gumel, "Comparison of propagation models for GSM 1800 and WCDMA systems in selected urban areas of Nigeria," International Journal of Applied Information Systems (IJAIS), Vol. 2, No. 7, 6-13, 2012.

7. Deligiorgi, D., K. Philippopoulos, and G. Kouroupetroglou, "Artificial neural network based methodologies for the spatial and temporal estimation of air temperature," International Conference on Pattern Recognition Applications and Methods, 669-578, 2013.

8. Usman, A. U., O. U. Okereke, and E. E. Omizegba, "Instantaneous GSM signal strength variation with weather and environmental factors," American Journal of Engineering Research (AJSER), Vol. 4, No. 3, 104-115, 2015.

9. Sharma, P. K. and R. K. Singh, "Comparative analysis of propagation path loss," International Journal of Engineering Science and Technology, Vol. 2, No. 6, 2008-2013, 2010.

10. Ayekomilogbon, O., O. Famoriji, and O. Olasoji, "UHF band radio wave propagation mechanism in forested environments for wireless communication systems," Journal of Information Engineering and Applications, Vol. 3, No. 7, 11-16, 2013.

11. Nwawelu, U. N., A. N. Nzeako, and M. A. Ahaneku, "The limitations of campus wireless networks: A case study of University of Nigeria, Nsukka," International Journal of Networks and Communications, Vol. 2, No. 5, 112-122, 2012.
doi:10.5923/j.ijnc.20120205.04

12. Ogbulezie, J. C., M. U. Onuu, D. E. Bassey, and S. Etienam-Umoh, "Site specific measurements and propagation models for GSM in three cities in Northern Nigeria," American Journal of Scientific and Industrial Research, Vol. 4, No. 2, 238-245, 2013a.
doi:10.5251/ajsir.2013.4.2.238.245

13. Ogbulezie, J. C., M. U. Onuu, J. O. Ushie, and B. E. Usibe, "Propagation models for GSM 900 and 1800 MHz for Port Harcourt and Enugu, Nigeria," Network and Communication Technologies, Vol. 2, No. 2, 1-10, 2013b.
doi:10.5539/nct.v2n2p1

14. Chebil, J., A. K. Lwas, M. R. Islam, and A. Zyoud, "Investigation of path loss models for mobile communications in Malaysia," Australian Journal of Basic and Applied Sciences, Vol. 5, No. 6, 365-371, 2011.

15. Armoogum, V., R. Munee, and S. Armoogum, "Path loss analysis for 3G mobile networks for urban and rural regions of Mauritius," Proceedings of the Sixth International Conference on Wireless and Mobile Communications (ICWMC), 164-169, 2010.

16. Benmus, T. A., R. Abboud, and M. K. Shater, "Neural network approach to model the propagation path loss for great Tripoli area at 900, 1800 and 2100 MHz bands," International Journal of Sciences and Techniques of Automatic Control and Engineering, Vol. 10, No. 2, 2121-2126, 2016.

17. Obot, A., O. Simeon, and J. Afolayan, "Comparative analysis of path loss prediction models for urban macrocellular environments," Nigerian Journal of Technology, Vol. 30, No. 3, 50-59, 2011.

18. Seybold, J. S., Introduction to RF Propagation, John Wiley & Sons Inc., 2005.
doi:10.1002/0471743690

19. Rappaport, T. S., Wireless Communications: Principles and Practice, 2nd Ed., Prentice Hall, 2002.

20. Ajose, S. O. and A. I. Imoize, "Propagation measurements and modelling at 1800 MHz in Lagos Nigeria," International Journal of Wireless and Mobile Computing, Vol. 6, No. 2, 154-173, 2013.
doi:10.1504/IJWMC.2013.054042

21. Saunders, S. and A. Aragón-Zavala, Antennas and Propagation for Wireless Communication Systems, 2nd Ed., John Wiley & Sons Inc., 2007.

22. Milanovic, J., S. Rimac-Drlje, and I. S. Majerski, "Radiowave propagation mechanisms and empirical models for fixed wireless access systems," Technical Gazette, Vol. 17, No. 1, 43-52, 2010.

23. Beale, M. H., M. T. Hagan, and B. O. Howard, Neural Network ToolboxTM, User Guide, Vol. 7, R2011b, 2011.

24. Aibinu, A. M., A. A. Shafie, and M. J. Salami, "Performance analysis of ANN based YCbCr skin detection algorithm," Procedia Engineering, Vol. 41, 1183-1189, 2012.
doi:10.1016/j.proeng.2012.07.299

25. Eichie, J. O., O. D. Oyedum, M. O. Ajewole, and A. M. Aibinu, "Artificial neural network model for the determination of GSM rxlevel from atmospheric parameters," Engineering Science and Technology, retrieved from http://dx.doi.org/10.1016/j.jestch.2016.11.002, 2016.

26. Ibeh, G. F. and G. A. Agbo, "Estimation of tropospheric refractivity with artificial neural network at Minna, Nigeria," Global Journal of Science Frontier Research Interdiciplinary, Vol. 2, No. 1, 8-14, 2012.

27. Litta, A. J., S. M. Idicula, and U. C. Mohanty, "Artificial neural network model in prediction of meteorological parameters during premonsoon thunderstorms," International Journal of Atmospheric Sciences, Vol. 10, 1-14, 2013.
doi:10.1155/2013/525383

28. Philippopoulos, K. and D. Deligiorgi, "Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography," Renewable Energy, Vol. 39, 75-82, 2012.
doi:10.1016/j.renene.2011.07.007