1. Engheta, N. and R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, 2006.
2. Vendik, I. B. and O. G. Vendik, "Metamaterials and their application in microwaves: A review," Technical Physics, Vol. 58, No. 1, 1-24, 2013.
doi:10.1134/S1063784213010234
3. Eleftheriades, G. V. and K. G. Balmain, Negative Refraction Metamaterials: Fundamental Principles and Applications, John Wiley & Sons, 2005.
doi:10.1002/0471744751
4. Appasani, B. and N. Gupta, "A novel wide band-gap structure for improved signal integrity," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 03, 591-596, 2016.
doi:10.1017/S1759078715000823
5. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas and Propagation Magazine, Vol. 54, No. 2, 10-35, 2012.
doi:10.1109/MAP.2012.6230714
6. Pelluri, R., N. Gupta, and B. Appasani, "A multi band absorber using band gap structures," 2015 International Conference on Microwave and Photonics, 1-2, Dhanbad, 2015.
7. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402
8. Kim, G. and B. Lee, "Design of wideband absorbers using RLC screen," Electronics Letters, Vol. 51, No. 11, 834-836, 2015.
doi:10.1049/el.2014.4084
9. Lim, D., D. Lee, and S. Lim, "Angle-and polarization-insensitive metamaterial absorber using via array," Scientific Reports, Vol. 6, 39686, 2016.
doi:10.1038/srep39686
10. Dincer, F., M. Karaaslan, E. Unal, and C. Sabah, "Dual-band polarization independent metamaterial absorber based on omega resonator and octa-star strip configuration," Progress In Electromagnetics Research, Vol. 141, 219-231, 2013.
doi:10.2528/PIER13061105
11. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.
doi:10.2528/PIER10122401
12. Lee, H.-M., "A broadband flexible metamaterial absorber based on double resonance," Progress In Electromagnetics Research Letters, Vol. 46, 73-78, 2014.
doi:10.2528/PIERL14031804
13. Ayop, O. B., M. K. Abd Rahim, N. A. Murad, N. A. Samsuri, and R. Dewan, "Triple band circular ring-shaped metamaterial absorber for x-band applications," Progress In Electromagnetics Research M, Vol. 39, 65-75, 2014.
doi:10.2528/PIERM14052402
14. Campbell, S. D. and R. W. Ziolkowski, "Lightweight, flexible, polarization-insensitive, highly absorbing meta-films," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1191-1200, 2013.
doi:10.1109/TAP.2012.2227658
15. Lee, J. and S. Lim, "Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance," Electronics Letters, Vol. 47, No. 1, 8-9, January 6, 2011.
doi:10.1049/el.2010.2770
16. Sen, G., et al. "Ultra-thin miniaturized metamaterial perfect absorber for X-band application," Microwave and Optical Technology Letters, Vol. 58, No. 10, 2367-2370, 2016.
doi:10.1002/mop.30048
17. Ozden, K., O. M. Yucedag, and H. Kocer, "Metamaterial based broadband RF absorber at X-band," International Journal of Electronics and Communications, Vol. 70, No. 8, 1062-1070, 2016.
doi:10.1016/j.aeue.2016.05.002
18. Sharma, S. K., S. Ghosh, and K. V. Srivastava, "An ultra-thin triple-band polarization-insensitive metamaterial absorber for S, C and X band applications," Appl. Phys. A, Vol. 122, No. 12, 1071, 2016.
doi:10.1007/s00339-016-0588-4
19. Sabah, C., "Perfect metamaterial absorbers with polarization angle independency in X-band waveguide," Modern Physics Letters B, Vol. 30, No. 11, 1650186, 2016.
doi:10.1142/S0217984916501864
20. Kim, B.-K. and B. Lee, "Wideband absorber at X-band adopting trumpet-shaped structures," Electronics Letters, Vol. 50, No. 25, 1957-1959, 2014.
doi:10.1049/el.2014.2780
21. Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 1989.
22. Kovacs, P. and Z. Raida, "Global evolutionary algorithms in the design of electromagnetic band gap structures with suppressed surface waves propagation," Radioengineering, Vol. 19, No. 1, 2010.
23. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "Equivalent circuit model of an ultra-thin polarization-independent triple band metamaterial absorber," AIP Advances, Vol. 4, No. 9, 097127, 2014.
doi:10.1063/1.4896282